119 lines
2.0 KiB
Markdown
119 lines
2.0 KiB
Markdown
# Landau distribution
|
||
|
||
|
||
## Landau PDF
|
||
|
||
:::: {.columns align=center}
|
||
::: {.column width=50%}
|
||
$$
|
||
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
|
||
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
|
||
$$
|
||
:::
|
||
|
||
::: {.column width=50%}
|
||
![](images/landau-pdf.pdf)
|
||
:::
|
||
::::
|
||
|
||
. . .
|
||
|
||
\begin{center}
|
||
No closed form for \alert{ANYTHING}
|
||
\end{center}
|
||
|
||
|
||
## Landau median
|
||
|
||
::::: {.columns}
|
||
|
||
:::: {.column width=50%}
|
||
|
||
::: incremental
|
||
- The median of $f$ is defined by
|
||
$$
|
||
F(m) = \int_{-\infty}^m fdx = \frac{1}{2}
|
||
$$
|
||
|
||
- Equivalently
|
||
$$
|
||
m = F^{-1}\left(\frac{1}{2}\right)
|
||
$$
|
||
|
||
- Numerical integration or QDF is needed
|
||
:::
|
||
|
||
::::
|
||
|
||
::: {.column width=50%}
|
||
![](images/median.pdf)
|
||
:::
|
||
|
||
:::::
|
||
|
||
|
||
## Landau median
|
||
|
||
- CDF computed by numerical integration
|
||
- QDF computed by numerical root-finding
|
||
|
||
\setbeamercovered{}
|
||
\begin{center}
|
||
\begin{tikzpicture}[remember picture]
|
||
\node at (0,0) (here) {$m_L\ex = 1.3557804...$};
|
||
\pause
|
||
\node [opacity=0.5, xscale=0.35, yscale=0.25 ] at (here) {\includegraphics{images/high.png}};
|
||
\end{tikzpicture}
|
||
\end{center}
|
||
|
||
\setbeamercovered{transparent}
|
||
|
||
|
||
## Landau mode
|
||
|
||
- Maximum $\hence \partial_x L(\mu) = 0$
|
||
|
||
. . .
|
||
|
||
- Computed by numerical minimization (Brent)
|
||
|
||
\setbeamercovered{}
|
||
|
||
\begin{center}
|
||
\begin{tikzpicture}[remember picture]
|
||
\node at (0,0) (here) {$\mu_L\ex = − 0.22278...$};
|
||
\pause
|
||
\node [opacity=0.5, xscale=0.32, yscale=0.25 ] at (here) {\includegraphics{images/high.png}};
|
||
\end{tikzpicture}
|
||
\end{center}
|
||
|
||
\setbeamercovered{transparent}
|
||
|
||
|
||
## Landau FWHM
|
||
|
||
We need to compute the maximum:
|
||
|
||
$$
|
||
L_{\text{max}} = L(\mu_L)
|
||
$$
|
||
$$
|
||
\text{FWHM} = w = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
|
||
$$
|
||
|
||
. . .
|
||
|
||
- Computed by numerical root finding (Brent)
|
||
|
||
\setbeamercovered{}
|
||
|
||
\begin{center}
|
||
\begin{tikzpicture}[remember picture]
|
||
\node at (0,0) (here) {$w_L\ex = 4.018645...$};
|
||
\pause
|
||
\node [opacity=0.5, xscale=0.32, yscale=0.25 ] at (here) {\includegraphics{images/high.png}};
|
||
\end{tikzpicture}
|
||
\end{center}
|
||
|
||
\setbeamercovered{transparent}
|