analistica/slides/sections/8.md

265 lines
2.8 KiB
Markdown

# Landau sample
## Sample
Sample N = 50'000 random points following $L(x)$
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
$$
. . .
gsl_ran_Landau(gsl_rng)
## Compatibility results:
Median:
:::: {.columns}
::: {.column width=50%}
- $t = 0.761$
- $p = 0.446$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
Mode:
:::: {.columns}
::: {.column width=50%}
- $t = 1.012$
- $p = 0.311$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
FWHM:
:::: {.columns}
::: {.column width=50%}
- $t=1.338$
- $p=0.181$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
# Moyal sample
## Sample
Sample N = 50'000 random points following $M_{\mu \sigma}(x)$
$$
M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
\left[ - \frac{1}{2} \left(
\frac{x - \mu}{\sigma}
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
$$
. . .
reverse sampling
- sampling $y$ uniformly in [0, 1] $\hence x = Q_M(y)$
## Compatibility results:
Median:
:::: {.columns}
::: {.column width=50%}
- $t = 669.940$
- $p = 0.000$
:::
::: {.column width=50%}
$$
\hence \text{Not compatible!}
$$
:::
::::
\vspace{10pt}
. . .
Mode:
:::: {.columns}
::: {.column width=50%}
- $t = 0.732$
- $p = 0.464$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
FWHM:
:::: {.columns}
::: {.column width=50%}
- $t = 1.329$
- $p = 0.184$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
# KS results
## Samples results
$N = 50000$ sampled points
. . .
Landau sample:
:::: {.columns}
::: {.column width=50%}
- $D = 0.004$
- $p = 0.379$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
Moyal sample:
:::: {.columns}
::: {.column width=50%}
- $D = 0.153$
- $p = 0.000$
:::
::: {.column width=50%}
$$
\hence \text{Not compatible!}
$$
:::
::::
# Trapani results
## Samples results
. . .
Landau sample:
:::: {.columns}
::: {.column width=33%}
$$
\mu_1
\begin{cases}
\Theta = 0.255 \\
p = 0.614
\end{cases}
$$
:::
::: {.column width=33% .c}
$$
\mu_2
\begin{cases}
\Theta = 0.432 \\
p = 0.511
\end{cases}
$$
:::
::: {.column width=33% .c}
$$
\hence \text{Infinite!}
$$
:::
::::
. . .
\vspace{20pt}
Moyal sample:
:::: {.columns}
::: {.column width=33%}
$$
\mu_1
\begin{cases}
\Theta^2 = 106 \\
p = 0.000
\end{cases}
$$
:::
::: {.column width=33%}
$$
\mu_2
\begin{cases}
\Theta^2 = 162 \\
p = 0.000
\end{cases}
$$
:::
::: {.column width=33% .c}
$$
\hence \text{Finite!}
$$
:::
::::