2.8 KiB
Landau sample
Sample
Sample N = 50'000 random points following L(x)
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
. . .
gsl_ran_Landau(gsl_rng)
Compatibility results:
Median:
:::: {.columns} ::: {.column width=50%}
t = 0.761
- $p = 0.446$ :::
::: {.column width=50%}
$$
\hence \text{Compatible!}
::: ::::
\vspace{10pt}
. . .
Mode:
:::: {.columns} ::: {.column width=50%}
t = 1.012
- $p = 0.311$ :::
::: {.column width=50%}
$$
\hence \text{Compatible!}
::: ::::
\vspace{10pt}
. . .
FWHM:
:::: {.columns} ::: {.column width=50%}
t=1.338
- $p=0.181$ :::
::: {.column width=50%}
$$
\hence \text{Compatible!}
::: ::::
Moyal sample
Sample
Sample N = 50'000 random points following M_{\mu \sigma}(x)
M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
\left[ - \frac{1}{2} \left(
\frac{x - \mu}{\sigma}
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
. . .
reverse sampling
- sampling
y
uniformly in [0, 1]\hence x = Q_M(y)
Compatibility results:
Median:
:::: {.columns} ::: {.column width=50%}
t = 669.940
- $p = 0.000$ :::
::: {.column width=50%}
$$
\hence \text{Not compatible!}
::: ::::
\vspace{10pt}
. . .
Mode:
:::: {.columns} ::: {.column width=50%}
t = 0.732
- $p = 0.464$ :::
::: {.column width=50%}
$$
\hence \text{Compatible!}
::: ::::
\vspace{10pt}
. . .
FWHM:
:::: {.columns} ::: {.column width=50%}
t = 1.329
- $p = 0.184$ :::
::: {.column width=50%}
$$
\hence \text{Compatible!}
::: ::::
KS results
Samples results
N = 50000
sampled points
. . .
Landau sample:
:::: {.columns} ::: {.column width=50%}
D = 0.004
- $p = 0.379$ :::
::: {.column width=50%}
$$
\hence \text{Compatible!}
::: ::::
\vspace{10pt}
. . .
Moyal sample:
:::: {.columns} ::: {.column width=50%}
D = 0.153
- $p = 0.000$ :::
::: {.column width=50%}
$$
\hence \text{Not compatible!}
::: ::::
Trapani results
Samples results
. . .
Landau sample:
:::: {.columns} ::: {.column width=33%}
$$
\mu_1
\begin{cases}
\Theta = 0.255 \\
p = 0.614
\end{cases}
:::
::: {.column width=33% .c}
$$
\mu_2
\begin{cases}
\Theta = 0.432 \\
p = 0.511
\end{cases}
:::
::: {.column width=33% .c}
$$
\hence \text{Infinite!}
::: ::::
. . .
\vspace{20pt}
Moyal sample:
:::: {.columns} ::: {.column width=33%}
$$
\mu_1
\begin{cases}
\Theta^2 = 106 \\
p = 0.000
\end{cases}
:::
::: {.column width=33%}
$$
\mu_2
\begin{cases}
\Theta^2 = 162 \\
p = 0.000
\end{cases}
:::
::: {.column width=33% .c}
$$
\hence \text{Finite!}
::: ::::