analistica/slides/sections/4.md

93 lines
1.3 KiB
Markdown

# Sample parameters estimation
## Sample parameters estimation
Once the points are sampled,
how to estimate their median, mode and FWHM?
. . .
- Binning data $\hence$ result depending on bin-width
. . .
- Alternative solutions
## Sample median
$$
m = Q \left( \frac{1}{2} \right)
$$
. . .
- Sort points in ascending order
. . .
- Middle element if odd
- Average of the two central elements if even
## Sample mode
Most probable value
. . .
HSM
- Iteratively identify the smallest interval containing half points
- Once the sample is reduced to less than three points, take average
## Sample FWHM
$$
\text{FWHM} = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
$$
. . .
KDE
- empirical PDF construction:
$$
f_\varepsilon(x) = \frac{1}{N\varepsilon} \sum_{i = 1}^N
G \left( \frac{x-x_i}{\varepsilon} \right)
$$
The parameter $\varepsilon$ controls the strength of the smoothing
## Sample FWHM
Silverman's rule of thumb:
$$
f_\varepsilon(x) = \frac{1}{N\varepsilon} \sum_{i = 1}^N
G \left( \frac{x-x_i}{\varepsilon} \right)
\with
\varepsilon = 0.88 \, S_N
\left( \frac{d + 2}{4}N \right)^{-1/(d + 4)}
$$
with:
- $S_N$ is the sample standard deviation
- $d$ is number of dimensions ($d = 1$)
. . .
\vspace{10pt}
Numerical root finding (Brent)
## Sample FWHM
![](images/kde.pdf)