91 lines
1.5 KiB
Markdown
91 lines
1.5 KiB
Markdown
# MC simulations
|
||
|
||
|
||
## In summary
|
||
|
||
-----------------------------------------------------
|
||
Landau Moyal
|
||
----------------- ----------------- -----------------
|
||
median $m_L\ex$ $m_M\ex (μ, σ)$
|
||
|
||
mode $\mu_L\ex$ $\mu_M\ex (μ)$
|
||
|
||
FWHM $w_L\ex$ $w_M\ex (σ)$
|
||
-----------------------------------------------------
|
||
|
||
|
||
## Moyal parameters
|
||
|
||
A $M(x)$ similar to $L(x)$ can be found by imposing:
|
||
|
||
\vspace{15pt}
|
||
|
||
- equal mode
|
||
$$
|
||
\mu_M\ex = \mu_L\ex \thus \mu \approx −0.22278298...
|
||
$$
|
||
|
||
. . .
|
||
|
||
- equal width
|
||
$$
|
||
w_M\ex = w_L\ex = \sigma \cdot a \thus \sigma \approx 1.1191486...
|
||
$$
|
||
|
||
|
||
## Moyal parameters
|
||
|
||
:::: {.columns}
|
||
::: {.column width=50%}
|
||
![](images/both-pdf-bef.pdf)
|
||
:::
|
||
|
||
::: {.column width=50%}
|
||
![](images/both-pdf-aft.pdf)
|
||
:::
|
||
::::
|
||
|
||
|
||
## Moyal parameters
|
||
|
||
This leads to more different medians:
|
||
|
||
\begin{align*}
|
||
m_M = 0.787... \thus &m_M = 0.658... \\
|
||
&m_L = 1.355...
|
||
\end{align*}
|
||
|
||
|
||
## Landau Sample
|
||
|
||
Sample N random points following $L(x)$
|
||
|
||
$$
|
||
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
|
||
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
|
||
$$
|
||
|
||
. . .
|
||
|
||
gsl_ran_Landau(gsl_rng)
|
||
|
||
|
||
## Moyal sample
|
||
|
||
Sample N random points following $M_{\mu \sigma}(x)$
|
||
|
||
$$
|
||
M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
|
||
\left[ - \frac{1}{2} \left(
|
||
\frac{x - \mu}{\sigma}
|
||
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
|
||
$$
|
||
|
||
. . .
|
||
|
||
reverse sampling
|
||
|
||
- sampling $y$ uniformly in [0, 1] $\hence x = Q_M(y)$
|
||
|
||
|