3.5 KiB
Moyal distribution
Moyal PDF
Standard form:
M(z) = \frac{1}{\sqrt{2 \pi}} \exp
\left[ - \frac{1}{2} \left( z + e^{-z} \right) \right]
. . .
More generally:
- location parameter
\mu
- scale parameter
\sigma
z = \frac{x - \mu}{\sigma}
\thus
M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
\left[ - \frac{1}{2} \left(
\frac{x - \mu}{\sigma}
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
Moyal CDF
The CDF F_M(x)
can be derived by direct integration:
F_M(x) = \int\limits_{- \infty}^x dy \, M(y)
= \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{y}{2}}
e^{- \frac{1}{2} e^{-y}}
. . .
With the change of variable z = e^{-\frac{y}{2}}/\sqrt{2}
:
F_M(x) =
\frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)} dz \, e^{- z^2}
\with f(x) = \frac{e^{- \frac{x}{2}}}{\sqrt{2}}
Moyal CDF
Remembering the error function
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2}
one finally gets:
F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
Moyal QDF
The quantile (CDF\textsuperscript{-1}) is found solving for x
:
y = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
hence:
Q_M(y) = -2 \ln \left[ \sqrt{2} \, \text{erf}^{-1} (1 - y) \right]
Moyal median
Defined by F(m) = \frac{1}{2}
or m = Q \left( \frac{1}{2} \right)
:
\begin{align*} M(z) &\thus m_M\ex = -2 \ln \left[ \sqrt{2} , \text{erf}^{-1} \left( \frac{1}{2} \right) \right] \ M_{\mu \sigma}(x) &\thus m_M\ex = \mu -2 \sigma \ln \left[ \sqrt{2} , \text{erf}^{-1} \left( \frac{1}{2} \right) \right] \end{align*}
\setbeamercovered{}
\begin{center} \begin{tikzpicture}[overlay] \pause \node [opacity=0.5, xscale=0.55, yscale=0.4 ] at (1.85,1.1) {\includegraphics{images/high.png}}; \end{tikzpicture} \end{center}
\setbeamercovered{transparent}
Moyal mode
Peak of the PDF:
\partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
\left( x + e^{-x} \right)} \right)
= \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
\left( x + e^{-x} \right)} \left( -\frac{1}{2} \right)
\left( 1 - e^{-x} \right)
\begin{align*} \partial_x M(z) = 0 &\thus \mu_M\ex = 0 \ \partial_x M_{\mu \sigma}(x) = 0 &\thus \mu_M\ex = \mu \ \end{align*}
\setbeamercovered{}
\begin{center} \begin{tikzpicture}[overlay] \pause \node [opacity=0.5, xscale=0.18, yscale=0.25 ] at (2.4,1.8) {\includegraphics{images/high.png}}; \end{tikzpicture} \end{center}
\setbeamercovered{transparent}
Moyal FWHM
We need to compute the maximum value:
M(\mu) = \frac{1}{\sqrt{2 \pi e}} \thus M(x_{\pm}) = \frac{1}{\sqrt{8 \pi e}}
. . .
which leads to:
x_{\pm} + e^{-x_{\pm}} = 1 + 2 \ln(2) \thus
\begin{cases}
x_+ = 1 + 2 \ln(2) + W_0 \left( - \frac{1}{4 e} \right) \\
x_- = 1 + 2 \ln(2) + W_{-1} \left( - \frac{1}{4 e} \right)
\end{cases}
Moyal FWHM
x_+ - x_- = 3.590806098... = a
\begin{align*} M(z) &\thus w_M^{\text{exp}} = a \ M_{\mu \sigma}(x) &\thus w_M^{\text{exp}} = \sigma \cdot a \ \end{align*}
\setbeamercovered{}
\begin{center} \begin{tikzpicture}[overlay] \pause \node [opacity=0.5, xscale=0.2, yscale=0.25 ] at (1.9,1.9) {\includegraphics{images/high.png}}; \end{tikzpicture} \end{center}
\setbeamercovered{transparent}