15 KiB
Exercise 6
Generating points according to Fraunhofer diffraction
The diffraction of a plane wave thorough a round slit must be simulated by
generating N =
50'000 points according to the intensity distribution
I(\theta)
on a screen at a great distance L
from the slit itself:
I(\theta) = \frac{E^2}{2} \left( \frac{2 \pi a^2 \cos{\theta}}{L}
\frac{J_1(x)}{x} \right)^2 \with x = k a \sin{\theta}
where:
E
is the electric field amplitude, default setE = \SI{1e4}{V/m}
;a
is the radius of the slit aperture, default seta = \SI{0.01}{m}
;\theta
is the angle specified in @fig:slit;J_1
is the Bessel function of first order;k
is the wavenumber, default setk = \SI{1e-4}{m^{-1}}
;L
default setL = \SI{1}{m}
.
\begin{figure} \hypertarget{fig:slit}{% \centering \begin{tikzpicture} \definecolor{cyclamen}{RGB}{146, 24, 43} % Walls \draw [thick] (-1,3) -- (1,3) -- (1,0.3) -- (1.2,0.3) -- (1.2,3) -- (9,3); \draw [thick] (-1,-3) -- (1,-3) -- (1,-0.3) -- (1.2,-0.3) -- (1.2,-3) -- (9,-3); \draw [thick] (10,3) -- (9.8,3) -- (9.8,-3) -- (10,-3); % Lines \draw [thick, gray] (0.7,0.3) -- (0.5,0.3); \draw [thick, gray] (0.7,-0.3) -- (0.5,-0.3); \draw [thick, gray] (0.6,0.3) -- (0.6,-0.3); \draw [thick, gray] (1.2,0) -- (9.8,0); \draw [thick, gray] (1.2,-0.1) -- (1.2,0.1); \draw [thick, gray] (9.8,-0.1) -- (9.8,0.1); \draw [thick, cyclamen] (1.2,0) -- (9.8,-2); \draw [thick, cyclamen] (7,0) to [out=-90, in=50] (6.6,-1.23); % Nodes \node at (0,0) {$2a$}; \node at (5.5,0.4) {$L$}; \node [cyclamen] at (5.5,-0.4) {$\theta$}; \node [rotate=-90] at (10.2,0) {screen}; \end{tikzpicture} \caption{Fraunhofer diffraction.}\label{fig:slit} } \end{figure}
Once again, the try and catch method described in @sec:3 was implemented and
the same procedure about the generation of \theta
was employed. This time,
though, \theta
must be evenly distributed on half sphere:
\begin{align*} \frac{d^2 P}{d\omega^2} = const = \frac{1}{2 \pi} &\thus d^2 P = \frac{1}{2 \pi} d\omega^2 = \frac{1}{2 \pi} d\phi \sin{\theta} d\theta \ &\thus \frac{dP}{d\theta} = \int_0^{2 \pi} d\phi \frac{1}{2 \pi} \sin{\theta} = \frac{1}{2 \pi} \sin{\theta} , 2 \pi = \sin{\theta} \end{align*}
\begin{align*} \theta = \theta (x) &\thus \frac{dP}{d\theta} = \frac{dP}{dx} \cdot \left| \frac{dx}{d\theta} \right| = \left. \frac{dP}{dx} \middle/ , \left| \frac{d\theta}{dx} \right| \right. \ &\thus \sin{\theta} = \left. 1 \middle/ , \left| \frac{d\theta}{dx} \right| \right. \end{align*}
If \theta
is chosen to grew together with x
, then the absolute value can be
omitted:
\begin{align*} \frac{d\theta}{dx} = \frac{1}{\sin{\theta}} &\thus d\theta \sin(\theta) = dx \ &\thus - \cos (\theta') |_{0}^{\theta} = x(\theta) - x(0) = x - 0 = x \ &\thus - \cos(\theta) + 1 =x \ &\thus \theta = \text{acos} (1 -x) \end{align*}
The sample was binned and stored in a histogram with a customizable number $n$
of bins default set n = 150
. In @fig:original an example is shown.
Gaussian noise convolution
The sample must then be smeared with a Gaussian noise with the aim to recover
the original sample afterwards, implementing a deconvolution routine.
For this purpose, a 'kernel' histogram with a odd number m
of bins and the
same bin width of the previous one, but a smaller number of them (m < n
), was
filled with m
points according to a Gaussian distribution with mean \mu
,
corresponding to the central bin, and variance \sigma
.
Then, the original histogram was convolved with the kernel in order to obtain
the smeared signal. Some results in terms of various \sigma
are shown in
@fig:convolved.
The convolution was implemented as follow. Consider the definition of
convolution of two functions f(x)
and g(x)
:
f*g (x) = \int \limits_{- \infty}^{+ \infty} dy f(y) g(x - y)
Since a histogram is made of discrete values, a discrete convolution of the
signal s
and the kernel k
must be computed. Hence, the procedure boils
down to a dot product between s
and the reverse histogram of k
for each
relative position of the two histograms. Namely, if c_i
is the $i^{\text{th}}$
bin of the convoluted histogram:
c_i = \sum_j k_j s_{i - j}
where j
runs over the bins of the kernel.
For a better understanding, see @fig:dot_conv. As can be seen, the third
histogram was obtained with n + m - 1
bins, a number greater than the initial
one.
\begin{figure} \hypertarget{fig:dot_conv}{% \centering \begin{tikzpicture} \definecolor{cyclamen}{RGB}{146, 24, 43} % original histogram \draw [thick, cyclamen, fill=cyclamen!05!white] (0.0,0) rectangle (0.5,2.5); \draw [thick, cyclamen, fill=cyclamen!05!white] (0.5,0) rectangle (1.0,2.8); \draw [thick, cyclamen, fill=cyclamen!25!white] (1.0,0) rectangle (1.5,2.3); \draw [thick, cyclamen, fill=cyclamen!25!white] (1.5,0) rectangle (2.0,1.8); \draw [thick, cyclamen, fill=cyclamen!25!white] (2.0,0) rectangle (2.5,1.4); \draw [thick, cyclamen, fill=cyclamen!25!white] (2.5,0) rectangle (3.0,1.0); \draw [thick, cyclamen, fill=cyclamen!25!white] (3.0,0) rectangle (3.5,1.0); \draw [thick, cyclamen, fill=cyclamen!05!white] (3.5,0) rectangle (4.0,0.6); \draw [thick, cyclamen, fill=cyclamen!05!white] (4.0,0) rectangle (4.5,0.4); \draw [thick, cyclamen, fill=cyclamen!05!white] (4.5,0) rectangle (5.0,0.2); \draw [thick, cyclamen, fill=cyclamen!05!white] (5.0,0) rectangle (5.5,0.2); \draw [thick, cyclamen] (6.0,0) -- (6.0,0.2); \draw [thick, cyclamen] (6.5,0) -- (6.5,0.2); \draw [thick, <->] (0,3.3) -- (0,0) -- (7,0); % kernel histogram \draw [thick, cyclamen, fill=cyclamen!25!white] (1.0,-1) rectangle (1.5,-1.2); \draw [thick, cyclamen, fill=cyclamen!25!white] (1.5,-1) rectangle (2.0,-1.6); \draw [thick, cyclamen, fill=cyclamen!25!white] (2.0,-1) rectangle (2.5,-1.8); \draw [thick, cyclamen, fill=cyclamen!25!white] (2.5,-1) rectangle (3.0,-1.6); \draw [thick, cyclamen, fill=cyclamen!25!white] (3.0,-1) rectangle (3.5,-1.2); \draw [thick, <->] (1,-2) -- (1,-1) -- (4,-1); % arrows \draw [thick, cyclamen, <->] (1.25,-0.2) -- (1.25,-0.8); \draw [thick, cyclamen, <->] (1.75,-0.2) -- (1.75,-0.8); \draw [thick, cyclamen, <->] (2.25,-0.2) -- (2.25,-0.8); \draw [thick, cyclamen, <->] (2.75,-0.2) -- (2.75,-0.8); \draw [thick, cyclamen, <->] (3.25,-0.2) -- (3.25,-0.8); \draw [thick, cyclamen, ->] (2.25,-2.0) -- (2.25,-4.2); % smeared histogram \begin{scope}[shift={(0,-1)}] \draw [thick, cyclamen, fill=cyclamen!05!white] (-1.0,-4.5) rectangle (-0.5,-4.3); \draw [thick, cyclamen, fill=cyclamen!05!white] (-0.5,-4.5) rectangle ( 0.0,-4.2); \draw [thick, cyclamen, fill=cyclamen!05!white] ( 0.0,-4.5) rectangle ( 0.5,-2.0); \draw [thick, cyclamen, fill=cyclamen!05!white] ( 0.5,-4.5) rectangle ( 1.0,-1.6); \draw [thick, cyclamen, fill=cyclamen!05!white] ( 1.0,-4.5) rectangle ( 1.5,-2.3); \draw [thick, cyclamen, fill=cyclamen!05!white] ( 1.5,-4.5) rectangle ( 2.0,-2.9); \draw [thick, cyclamen, fill=cyclamen!25!white] ( 2.0,-4.5) rectangle ( 2.5,-3.4); \draw [thick, cyclamen] (3.0,-4.5) -- (3.0,-4.3); \draw [thick, cyclamen] (3.5,-4.5) -- (3.5,-4.3); \draw [thick, cyclamen] (4.0,-4.5) -- (4.0,-4.3); \draw [thick, cyclamen] (4.5,-4.5) -- (4.5,-4.3); \draw [thick, cyclamen] (5.0,-4.5) -- (5.0,-4.3); \draw [thick, cyclamen] (5.5,-4.5) -- (5.5,-4.3); \draw [thick, cyclamen] (6.0,-4.5) -- (6.0,-4.3); \draw [thick, cyclamen] (6.5,-4.5) -- (6.5,-4.3); \draw [thick, cyclamen] (7.0,-4.5) -- (7.0,-4.3); \draw [thick, cyclamen] (7.5,-4.5) -- (7.5,-4.3); \draw [thick, <->] (-1,-2.5) -- (-1,-4.5) -- (8,-4.5); \end{scope} % nodes \node [above] at (2.25,-5.5) {$c_i$}; \node [above] at (3.25,0) {$s_i$}; \node [above] at (1.95,0) {$s_{i-3}$}; \node [below] at (1.75,-1) {$k_3$}; \end{tikzpicture} \caption{Dot product as a step of the convolution between the original signal (above) and the kernel (center). The final result is the lower fledging histogram.}\label{fig:dot_conv} } \end{figure}
Unfolding with FFT
Two different unfolding routines were implemented, one of which exploiting the
Fast Fourier Transform. This method is based on the property of the Fourier
transform according to which, given two functions f(x)
and g(x)
:
\hat{F}[f*g] = \hat{F}[f] \cdot \hat{F}[g]
where \hat{F}[\quad]
stands for the Fourier transform of its argument.
Thus, the implementation of this tecnique lies in the computation of the Fourier
trasform of the smeared signal and the kernel, the ratio between their
transforms and the anti-transformation of the result:
\hat{F}[s*k] = \hat{F}[s] \cdot \hat{F}[k] \thus
\hat{F} [s] = \frac{\hat{F}[s*k]}{\hat{F}[k]}
Being the histogram a discrete set of data, the Discrete Fourier Transform (DFT)
was emploied. In particular, the FFT are efficient algorithms for calculating
the DFT. Given a set of n
values {$z_i$}, each one is transformed into:
x_j = \sum_{k=0}^{n-1} z_k \exp \left( - \frac{2 \pi i j k}{n} \right)
The evaluation of the DFT is a matrix-vector multiplication W \vec{z}
. A
general matrix-vector multiplication takes O(n^2)
operations. FFT algorithms,
instad, use a divide-and-conquer strategy to factorize the matrix into smaller
sub-matrices. If n
can be factorized into a product of integers n_1
, $n_2
\ldots n_m$, then the DFT can be computed in $O(n \sum n_i) < O(n^2)$
operations, hence the name.
The inverse Fourier transform is thereby defined as:
z_j = \frac{1}{n}
\sum_{k=0}^{n-1} x_k \exp \left( \frac{2 \pi i j k}{n} \right)
In GSL, gsl_fft_complex_forward()
and gsl_fft_complex_inverse()
are
functions which allow to compute the foreward and inverse transform,
respectively.
In order to accomplish this procedure, every histogram was transformed into a vector. The kernel vector was 0-padded and centred in the middle to make its length the same as that of the signal, making it feasable to implement the division between the entries of the vectors one by one.
The inputs and outputs for the complex FFT routines are packed arrays of
floating point numbers. In a packed array the real and imaginary parts of
each complex number are placed in alternate neighboring elements.
In this special case, the sequence of values which must be transformed is made
of real numbers, but the Fourier transform is not real: it is a complex sequence
wich satisfies:
z_k = z^*_{n-k}
where z^*
is the conjugate of z
. A sequence with this symmetry is called
'half-complex'. This structure requires particular storage layouts for the
forward transform (from real to half-complex) and inverse transform (from
half-complex to real). As a consequence, the routines are divided into two sets:
gsl_fft_real
and gsl_fft_halfcomplex
. The symmetry of the half-complex
sequence implies that only half of the complex numbers in the output need to be
stored. This works for all lengths: when the length is even, the middle value
is real. Thus, only n
real numbers are required to store the half-complex
sequence (half for the real part and half for the imaginary).
If the bin width is \Delta \theta
, then the DFT domain ranges from $-1 / (2
\Delta \theta)$ to +1 / (2 \Delta \theta
). The GSL functions aforementioned
store the positive values from the beginning of the array up to the middle and
the negative backwards from the end of the array (see @fig:reorder).
\begin{figure} \hypertarget{fig:reorder}{% \centering \begin{tikzpicture} \definecolor{cyclamen}{RGB}{146, 24, 43} % standard histogram \begin{scope}[shift={(7,0)}] \draw [thick, cyclamen] (0.5,0) -- (0.5,0.2); \draw [thick, cyclamen, fill=cyclamen!25!white] (1.0,0) rectangle (1.5,0.6); \draw [thick, cyclamen, fill=cyclamen!25!white] (1.5,0) rectangle (2.0,1.2); \draw [thick, cyclamen, fill=cyclamen!25!white] (2.0,0) rectangle (2.5,1.4); \draw [thick, cyclamen, fill=cyclamen!25!white] (2.5,0) rectangle (3.0,1.4); \draw [thick, cyclamen, fill=cyclamen!25!white] (3.0,0) rectangle (3.5,1.2); \draw [thick, cyclamen, fill=cyclamen!25!white] (3.5,0) rectangle (4.0,0.6); \draw [thick, cyclamen] (4.5,0) -- (4.5,0.2); \draw [thick, ->] (0,0) -- (5,0); \draw [thick, ->] (2.5,0) -- (2.5,2); \end{scope} % shifted histogram \draw [thick, cyclamen, fill=cyclamen!25!white] (0.5,0) rectangle (1.0,1.4); \draw [thick, cyclamen, fill=cyclamen!25!white] (1.0,0) rectangle (1.5,1.2); \draw [thick, cyclamen, fill=cyclamen!25!white] (1.5,0) rectangle (2.0,0.6); \draw [thick, cyclamen, fill=cyclamen!25!white] (3.0,0) rectangle (3.5,0.6); \draw [thick, cyclamen, fill=cyclamen!25!white] (3.5,0) rectangle (4.0,1.2); \draw [thick, cyclamen, fill=cyclamen!25!white] (4.0,0) rectangle (4.5,1.4); \draw [thick, ->] (0,0) -- (5,0); \draw [thick, ->] (2.5,0) -- (2.5,2); \end{tikzpicture} \caption{On the left, an example of the DFT as it is given by the gsl function and the same dataset, on the right, with the rearranged "intuitive" order of the sequence.}\label{fig:reorder} } \end{figure}
When \hat{F}[s*k]
and \hat{F}[k]
are computed, their normal format must be
restored in order to use them as standard complex numbers and compute the ratio
between them. Then, the result must return in the half-complex format for the
inverse DFT application.
GSL provides the function gsl_fft_halfcomplex_unpack
which passes the vectors
from half-complex format to standard complex format. The inverse procedure,
required to compute the inverse transformation of \hat{F}[s]
, which is not
provided by GSL, was implemented in the code.
The fact that the gaussian kernel is centerd in the middle of the vector and
not in the \text{zero}^{th}
bin causes the final result to be shifted of half
the leght of the vector the same as it was produced by a DFT. This makes it
necessary to rearrange the two halfs of the final result.
At the end, the external bins which exceed with respect to the original signal
are cut away in order to restore the original number of bins n
.
Signal convolved with kernel on the left and deconvolved signal on the right.
Increasing values of \sigma
from top to bottom. \Delta \theta
is the bin
width.
As can be seen from the plots on the left in @fig:convolved, increasig the
value of \sigma
implies a stronger smoothing of the curve, while the
deconvolution process seems not to be affected by \sigma
amplitude changes:
it always gives the same outcome.
It was also implemented the possibility to add a Poisson noise to the distribution to check weather the deconvolution is affected or not by this kind of noise.