3.8 KiB
Results
Compatibility test
Comparing sample properties:
p = 1 - \text{erf} \left( \frac{t}{\sqrt{2}} \right)\ \with
t = \frac{|x\ex - x\ob|}{\sqrt{\sigma\ex^2 + \sigma\ob^2}}
x\ex
andx\ob
are the expected and observed values\sigma\ex
and\sigma\ob
are their absolute errors
. . .
At 95% confidence level, the values are compatible if:
p > 0.05
Compatibility test
\setbeamercovered{} \begin{center} \begin{tikzpicture} %notes \draw [very thick, gray] (0,0) -- (0,3); \draw [very thick, gray] (-1.45,1.5) -- (1.45,1.5); \draw [very thick, gray] (-1.35,1.3) -- (-1.55,1.7); \draw [very thick, gray] ( 1.35,1.3) -- ( 1.55,1.7); \node at (0,-0.4) {$x\ex$}; \node [right] at (1.7,1.7) {$2 , \sqrt{\sigma\ex^2 + \sigma\ob^2}$}; % axes \draw [very thick, <->] (-5,4) -- (-5,0) -- (5,0); \node [right] at (5,0) {$x$}; % Gaussian \draw [domain=-5:5, smooth, variable=\x, cyclamen, very thick] plot ({\x}, {3exp(-(\x\x/3))}); \pause % area \fill [domain=2:5, smooth, variable=\x, cyclamen!20!white, very thick] (2,0) -- plot ({\x}, {3exp(-(\x\x/3))}) -- (5,0) -- cycle; \fill [domain=-5:-2, smooth, variable=\x, cyclamen!20!white, very thick] (-5,0) -- plot ({\x}, {3exp(-(\x\x/3))}) -- (-2,0) -- cycle; % axes \draw [very thick, <->] (-5,4) -- (-5,0) -- (5,0); % Gaussian \draw [domain=-5:5, smooth, variable=\x, cyclamen, very thick] plot ({\x}, {3exp(-(\x\x/3))}); %notes \draw [thick, cyclamen] (-2,0) -- (-2,0.8); \draw [thick, cyclamen] ( 2,0) -- ( 2,0.8); \node at (2,-0.4) {$x\ob$}; \end{tikzpicture} \end{center} \setbeamercovered{transparent}
Landau results:
Median:
:::: {.columns} ::: {.column width=50%}
t = 0.761
- $p = 0.446$ :::
::: {.column width=50%}
$$
\hence \text{Compatible!}
::: ::::
\vspace{10pt}
. . .
Mode:
:::: {.columns} ::: {.column width=50%}
t = 1.012
- $p = 0.311$ :::
::: {.column width=50%}
$$
\hence \text{Compatible!}
::: ::::
\vspace{10pt}
. . .
FWHM:
:::: {.columns} ::: {.column width=50%}
t=1.338
- $p=0.181$ :::
::: {.column width=50%}
$$
\hence \text{Compatible!}
::: ::::
Moyal results:
Median:
:::: {.columns} ::: {.column width=50%}
t = 669.940
- $p = 0.000$ :::
::: {.column width=50%}
$$
\hence \text{Not compatible!}
::: ::::
\vspace{10pt}
. . .
Mode:
:::: {.columns} ::: {.column width=50%}
t = 0.732
- $p = 0.464$ :::
::: {.column width=50%}
$$
\hence \text{Compatible!}
::: ::::
\vspace{10pt}
. . .
FWHM:
:::: {.columns} ::: {.column width=50%}
t = 1.329
- $p = 0.184$ :::
::: {.column width=50%}
$$
\hence \text{Compatible!}
::: ::::
KS results
N = 50000
sampled points
. . .
Landau sample:
:::: {.columns} ::: {.column width=50%}
D = 0.004
- $p = 0.379$ :::
::: {.column width=50%}
$$
\hence \text{Compatible!}
::: ::::
\vspace{10pt}
. . .
Moyal sample:
:::: {.columns} ::: {.column width=50%}
D = 0.153
- $p = 0.000$ :::
::: {.column width=50%}
$$
\hence \text{Not compatible!}
::: ::::
Trapani results
. . .
Landau sample:
:::: {.columns} ::: {.column width=33%}
$$
\mu_1
\begin{cases}
\Theta = 0.255 \\
p = 0.614
\end{cases}
:::
::: {.column width=33% .c}
$$
\mu_2
\begin{cases}
\Theta = 0.432 \\
p = 0.511
\end{cases}
:::
::: {.column width=33% .c}
$$
\hence \text{Infinite!}
::: ::::
. . .
\vspace{20pt}
Moyal sample:
:::: {.columns} ::: {.column width=33%}
$$
\mu_1
\begin{cases}
\Theta^2 = 106 \\
p = 0.000
\end{cases}
:::
::: {.column width=33%}
$$
\mu_2
\begin{cases}
\Theta^2 = 162 \\
p = 0.000
\end{cases}
:::
::: {.column width=33% .c}
$$
\hence \text{Finite!}
::: ::::