1.5 KiB
1.5 KiB
Goal
Goal
- Generate a sample
L
of points from a Landau PDF - Generate a sample
M
of points from a Moyal PDF
. . .
- Implement a bunch of statistical tests
. . .
- Check if they work:
- the sample
L
truly comes from a Landau PDF - the sample
M
does not come from a Landau PDF
- the sample
Why?
The Landau and Moyal PDFs are really similar. Historically, the latter was utilized in the approximation of the former.
:::: {.columns} ::: {.column width=33%} {height=130pt} :::
::: {.column width=33%} {height=130pt} :::
::: {.column width=33%} {height=130pt} ::: ::::
Two similar distributions
:::: {.columns} ::: {.column width=50%} Landau PDF
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
:::
::: {.column width=50%} Moyal PDF
$$
M(x) = \frac{1}{\sqrt{2 \pi}} \exp \left[ - \frac{1}{2}
\left( x + e^{- x} \right) \right]
::: ::::
\vspace{10pt}
:::: {.columns} ::: {.column width=50%} :::
::: {.column width=50%} ::: ::::
Two similar distributions
Statistical tests
. . .
- Parameters comparison:
- compatibility between expected and observed PDF parameters
. . .
- Kolmogorov - Smirnov:
- compatibility between expected and observed CDF
. . .
- Trapani test:
- compatibiity between expected and observed mean