88 lines
1.3 KiB
Markdown
88 lines
1.3 KiB
Markdown
# Sample parameters estimation
|
|
|
|
|
|
## Sample parameters estimation
|
|
|
|
Once the points are sampled,
|
|
how to estimate their median, mode and FWHM?
|
|
|
|
. . .
|
|
|
|
- Binning data $\quad \longrightarrow \quad$ result depending on bin-width
|
|
|
|
. . .
|
|
|
|
- Alternative solutions
|
|
|
|
|
|
## Sample median
|
|
|
|
$$
|
|
m = Q \left( \frac{1}{2} \right)
|
|
$$
|
|
|
|
. . .
|
|
|
|
- Sort points in ascending order
|
|
|
|
. . .
|
|
|
|
- Middle element if odd
|
|
- Average of the two central elements if even
|
|
|
|
|
|
## Sample mode
|
|
|
|
Most probable value
|
|
|
|
. . .
|
|
|
|
HSM
|
|
|
|
- Iteratively identify the smallest interval containing half points
|
|
- Once the sample is reduced to less than three points, take average
|
|
|
|
|
|
## Sample FWHM
|
|
|
|
$$
|
|
\text{FWHM} = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
|
|
$$
|
|
|
|
. . .
|
|
|
|
KDE
|
|
|
|
- empirical PDF construction:
|
|
|
|
$$
|
|
f_\varepsilon(x) = \frac{1}{N\varepsilon} \sum_{i = 1}^N
|
|
G \left( \frac{x-x_i}{\varepsilon} \right)
|
|
$$
|
|
|
|
The parameter $\varepsilon$ controls the strength of the smoothing
|
|
|
|
|
|
## Sample FWHM
|
|
|
|
Silverman's rule of thumb:
|
|
|
|
$$
|
|
f_\varepsilon(x) = \frac{1}{N\varepsilon} \sum_{i = 1}^N
|
|
G \left( \frac{x-x_i}{\varepsilon} \right)
|
|
\with
|
|
\varepsilon = 0.88 \, S_N
|
|
\left( \frac{d + 2}{4}N \right)^{-1/(d + 4)}
|
|
$$
|
|
|
|
with:
|
|
|
|
- $S_N$ is the sample standard deviation
|
|
- $d$ is number of dimensions ($d = 1$)
|
|
|
|
. . .
|
|
|
|
\vspace{10pt}
|
|
|
|
Numerical root finding (Brent)
|