analistica/slides/sections/1.md

99 lines
1.5 KiB
Markdown

# Goal
## Goal
Construct six statistical tests to assert whether a sample comes from a Landau
distribution
. . .
- Generate a sample $L$ from a Landau PDF
- Generate a sample $M$ from a Moyal PDF
. . .
$H_0$: sample following Landau PDF
- can we accept $H_0$ for $L$?
- can we reject $H_0$ for $M$?
## Why Moyal?
The Landau and Moyal PDFs are really similar. Historically, the latter was
utilized as an approximation of the former.
:::: {.columns}
::: {.column width=33%}
![](images/moyal-photo.jpg){height=130pt}
:::
::: {.column width=33%}
![](images/mondau-photo.jpg){height=130pt}
:::
::: {.column width=33%}
![](images/landau-photo.jpg){height=130pt}
:::
::::
## Two similar distributions
:::: {.columns}
::: {.column width=50%}
Landau PDF
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
$$
:::
::: {.column width=50%}
Moyal PDF
$$
M(x) = \frac{1}{\sqrt{2 \pi}} \exp \left[ - \frac{1}{2}
\left( x + e^{- x} \right) \right]
$$
:::
::::
\vspace{10pt}
:::: {.columns}
::: {.column width=50%}
![](images/landau-pdf.pdf)
:::
::: {.column width=50%}
![](images/moyal-pdf.pdf)
:::
::::
## Two similar distributions
![](images/both-pdf.pdf)
## Statistical tests
. . .
- **Properties test**:
compatibility between expected and observed PDF properties
. . .
- **Kolmogorov - Smirnov test**:
compatibility between expected and empirical CDF
. . .
- **Trapani test**:
test for finite or infinite moments