1.1 KiB
1.1 KiB
Kolmogorov - Smirnov test
KS
Quantify distance between expected and observed CDF
. . .
KS statistic:
D_N = \text{sup}_x |F_N(x) - F(x)|
F(x)
is the expected CDFF_N(x)
is the empirical CDF ofN
sampled points- sort points in ascending order
- number of points preceding the point normalized by
N
KS
H_0
: points sampled according to F(x)
. . .
If H_0
is true:
\sqrt{N}D_N \xrightarrow{N \rightarrow + \infty} K
Kolmogorov distribution with CDF:
P(K \leqslant K_0) = 1 - p = \frac{\sqrt{2 \pi}}{K_0}
\sum_{j = 1}^{+ \infty} e^{-(2j - 1)^2 \pi^2 / 8 K_0^2}
. . .
a $p$-value can be computed
- At 95% confidence level,
H_0
cannot be disproved ifp > 0.05
Samples results
Samples results
N = 50000
sampled points
. . .
Landau sample:
:::: {.columns} ::: {.column width=50%}
D = 0.004
- $p = 0.379$ :::
::: {.column width=50%}
$$
\thus \text{Compatible!}
::: ::::
\vspace{10pt}
. . .
Moyal sample:
:::: {.columns} ::: {.column width=50%}
D = 0.153
- $p = 0.000$ :::
::: {.column width=50%}
$$
\thus \text{Not compatible!}
::: ::::