4.5 KiB
Trapani test
Trapani test
::: incremental
-
Random variables
\left\{ x_i \right\}
sampled from a distributionf
-
Sample moments converge to
f
moments -
H_0
:\mu_k \longrightarrow + \infty
-
Statistic with 1 dof
\chi^2
distribution -
$p$-value
\rightarrow
reject or acceptH_0
:::
Infinite moments
- Sample
L
from a Landau PDF - Sample
M
from a Moyal PDF
. . .
\vspace{2em}
:::: {.columns} ::: {.column width=50% .c} For the Landau PDF: \begin{align*} \mu_1 &= \text{E}\left[|x|\right] = + \infty \ \mu_2 &= \text{E}\left[|x|^2\right] = + \infty \end{align*} :::
::: {.column width=50%} . . .
For the Moyal PDF: \begin{align*} \mu_1 &= \text{E}\left[|x|\right] < + \infty \ \mu_2 &= \text{E}\left[|x|^2\right] < + \infty \end{align*} ::: ::::
Infinite moments
::: incremental
-
Trapani test: check whether a moment is infinite
-
Consistency test: \begin{align*} \text{infinite} &\thus \text{may be Landau} \ \text{finite} &\thus \text{not Landau} \end{align*}
-
Compatibility test with
\mu_k = + \infty
-
If points were sampled from a Cauchy distribution...
:::
Trapani test
Trapani test
::: incremental
- Start with
\left\{ x_i \right\}^N
and compute\mu_k
as:\mu_k = \frac{1}{N} \sum_{i = 1}^N |x_i|^k
- Generate
r
points\left\{ \xi_j\right\}^r
according toG(0, 1)
and define\left\{ a_j \right\}^r
as:a_j = \sqrt{e^{\mu_k}} \cdot \xi_j \thus G\left( 0, \sqrt{e^{\mu_k}} \right)
- The greater
\mu_k
, the 'larger'G\left( 0, \sqrt{e^{\mu_k}} \right)
\begin{cases}
\mu_k \longrightarrow + \infty \\
r \longrightarrow + \infty
\end{cases}
\thus a_j \text{ distributed uniformly}
:::
Trapani test
- Define the sequence:
\left\{ \zeta_j (u) \right\}^r
as:\zeta_j (u) = \theta( u - a_j) \with \theta - \text{Heaviside}
. . .
\begin{center} \begin{tikzpicture}[>=Stealth] % line \draw [line width=3, ->, cyclamen] (0,0) -- (10,0); \node [right] at (10,0) {$u$}; % tic \draw [thick] (5,-0.3) -- (5,0.3); \node [above] at (5,0.3) {$u_0$}; % aj tics \draw [thick, cyclamen] (1,-0.2) -- (1,0.2); \node [below right, cyclamen] at (1,-0.2) {$a_{j+2}$}; \draw [thick, cyclamen] (2,-0.2) -- (2,0.2); \node [below right, cyclamen] at (2,-0.2) {$a_j$}; \draw [thick, cyclamen] (5.2,-0.2) -- (5.2,0.2); \node [below right, cyclamen] at (5.2,-0.2) {$a_{j+2}$}; \draw [thick, cyclamen] (6,-0.2) -- (6,0.2); \node [below right, cyclamen] at (6,-0.2) {$a_{j+3}$}; \draw [thick, cyclamen] (8.5,-0.2) -- (8.5,0.2); \node [below right, cyclamen] at (8.5,-0.2) {$a_{j+4}$}; % notes \node [below] at (1,-1) {1}; \node [below] at (2,-1) {1}; \node [below] at (5.2,-1) {0}; \node [below] at (6,-1) {0}; \node [below] at (8.5,-1) {0}; \draw [thick, ->] (1,-0.5) -- (1,-1); \draw [thick, ->] (2,-0.5) -- (2,-1); \draw [thick, ->] (5.2,-0.5) -- (5.2,-1); \draw [thick, ->] (6,-0.5) -- (6,-1); \draw [thick, ->] (8.5,-0.5) -- (8.5,-1); \end{tikzpicture} \end{center}
. . .
-
If
a_j
uniformly distributed:\zeta_j (u)
Bernoulli PDF with $P\left( \zeta_j (u) = 1 \right) = \frac{1}{2}$ $\hence \text{E}[\zeta_j]_j = \frac{1}{2} \quad \wedge \quad \text{Var}[\zeta_j]_j = \frac{1}{4}$
Trapani test
::: incremental
- If
a_j
uniformly distributed, by the CLT:
\sum_j \zeta_j (u) \hence
G \left( \frac{r}{2}, \frac{\sqrt{r}}{2} \right)
- Define the function
\vartheta (u)
as:
\vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
\to G \left( 0, 1 \right)
- Test statistic:
\Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u)
:::
Trapani test
Under \bold{H_0}
: \mu_k \to +\infty
\Theta \to \chi^2
asn,r \to +\infty
. . .
Under \bold{H_a}
: \mu_k < + \infty
::: incremental
-
\text{E}[\zeta_j] \neq \frac{1}{2}
-
the residues $\vartheta (u) = \frac{2}{\sqrt{r}} \sum_{j} \left[ \zeta_j (u) - \frac{1}{2} \right]$ become large
-
\Theta \to +\infty
asn,r \to +\infty
:::
Trapani test
MC simulations [@trapani15] gives:
r = o(N) \hence r = N^{0.75}
\underbar{u} = -1 \quad \wedge \quad \bar{u} = 1
\psi(u)
uniform
. . .
\Begin{alertblock}{Important}
For k > 1
, \mu_k
must be made scale-invariant:
$$
\mu_k^* = \frac{\mu_k}{ \left( \mu_{\phi} \right)^{k/\phi} }
\with \phi \in (0, k)
\End{alertblock}