ex-7: split into multiple files

This commit is contained in:
Michele Guerini Rocco 2020-03-06 10:54:28 +00:00
parent cf27610d53
commit f3293ba808
6 changed files with 390 additions and 399 deletions

46
ex-7/common.c Normal file
View File

@ -0,0 +1,46 @@
#include "common.h"
#include <gsl/gsl_randist.h>
/* Create a sample of `n` points */
sample_t* sample_t_alloc(size_t n, struct par p) {
sample_t *x = malloc(sizeof(sample_t));
x->p = p;
x->data = gsl_matrix_alloc(n, 2);
return x;
}
/* Delete a sample */
void sample_t_free(sample_t *x) {
gsl_matrix_free(x->data);
free(x);
}
/* `generate_normal(r, n, p)` will create
* a sample of `n` points, distributed
* according to a bivariate gaussian distribution
* of parameters `p`.
*/
sample_t* generate_normal(
gsl_rng *r, size_t n, struct par *p) {
sample_t *s = sample_t_alloc(n, *p);
for (size_t i = 0; i < n; i++) {
/* Generate a vector (x,y) with
* a standard (μ = 0) bivariate
* gaussian PDF.
*/
double *x = gsl_matrix_ptr(s->data, i, 0);
double *y = gsl_matrix_ptr(s->data, i, 1);
gsl_ran_bivariate_gaussian(
r,
p->sigma_x, p->sigma_y, p->rho,
x, y);
/* Shift the vector to (x₀,y₀) */
*x += p->x0;
*y += p->y0;
}
return s;
}

40
ex-7/common.h Normal file
View File

@ -0,0 +1,40 @@
#pragma once
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_rng.h>
/* Parameters for bivariate
* gaussian PDF
*/
struct par {
double x0; // x mean
double y0; // y mean
double sigma_x; // x standard dev
double sigma_y; // y standard dev
double rho; // correlation: cov(x,y)/σx⋅σy
};
/* A sample of N 2D points is an
* N×2 matrix, with vectors as rows.
*/
typedef struct {
struct par p;
gsl_matrix *data;
} sample_t;
/* Create a sample of `n` points */
sample_t* sample_t_alloc(size_t n, struct par p);
/* Delete a sample */
void sample_t_free(sample_t *x);
/* `generate_normal(r, n, p)` will create
* a sample of `n` points, distributed
* according to a bivariate gaussian distribution
* of parameters `p`.
*/
sample_t* generate_normal(gsl_rng *r, size_t n, struct par *p);

186
ex-7/fisher.c Normal file
View File

@ -0,0 +1,186 @@
#include "fisher.h"
#include <math.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_linalg.h>
/* Builds the covariance matrix Σ
* from the standard parameters (σ, ρ)
* of a bivariate gaussian.
*/
gsl_matrix* normal_cov(struct par *p) {
double var_x = pow(p->sigma_x, 2);
double var_y = pow(p->sigma_y, 2);
double cov_xy = p->rho * p->sigma_x * p->sigma_y;
gsl_matrix *cov = gsl_matrix_alloc(2, 2);
gsl_matrix_set(cov, 0, 0, var_x);
gsl_matrix_set(cov, 1, 1, var_y);
gsl_matrix_set(cov, 0, 1, cov_xy);
gsl_matrix_set(cov, 1, 0, cov_xy);
return cov;
}
/* Builds the mean vector of
* a bivariate gaussian.
*/
gsl_vector* normal_mean(struct par *p) {
gsl_vector *mu = gsl_vector_alloc(2);
gsl_vector_set(mu, 0, p->x0);
gsl_vector_set(mu, 1, p->y0);
return mu;
}
/* `fisher_proj(c1, c2)` computes the optimal
* projection map, which maximises the separation
* between the two classes.
* The projection vector w is given by
*
* w = Sw¹ (μ - μ)
*
* where Sw = Σ + Σ is the so-called within-class
* covariance matrix.
*/
gsl_vector* fisher_proj(sample_t *c1, sample_t *c2) {
/* Construct the covariances of each class... */
gsl_matrix *cov1 = normal_cov(&c1->p);
gsl_matrix *cov2 = normal_cov(&c2->p);
/* and the mean values */
gsl_vector *mu1 = normal_mean(&c1->p);
gsl_vector *mu2 = normal_mean(&c2->p);
/* Compute the inverse of the within-class
* covariance Sw¹.
* Note: by definition Σ is symmetrical and
* positive-definite, so Cholesky is appropriate.
*/
gsl_matrix_add(cov1, cov2);
gsl_linalg_cholesky_decomp(cov1);
gsl_linalg_cholesky_invert(cov1);
/* Compute the difference of the means. */
gsl_vector *diff = gsl_vector_alloc(2);
gsl_vector_memcpy(diff, mu2);
gsl_vector_sub(diff, mu1);
/* Finally multiply diff by Sw.
* This uses the rather low-level CBLAS
* functions gsl_blas_dgemv:
*
* ___ double ___ 1 ___ nothing
* / / /
* dgemv computes y := α op(A)x + βy
* \ \__matrix-vector \____ 0
* \__ A is symmetric
*/
gsl_vector *w = gsl_vector_alloc(2);
gsl_blas_dgemv(
CblasNoTrans, // do nothing on A
1, // α = 1
cov1, // matrix A
diff, // vector x
0, // β = 0
w); // vector y
// free memory
gsl_matrix_free(cov1);
gsl_matrix_free(cov2);
gsl_vector_free(mu1);
gsl_vector_free(mu2);
gsl_vector_free(diff);
return w;
}
/* `fisher_cut(ratio, w, c1, c2)` computes
* the threshold (cut), on the line given by
* `w`, to discriminates the classes `c1`, `c2`;
* with `ratio` being the ratio of their prior
* probabilities.
*
* The cut is fixed by the condition of
* conditional probability being the
* same for each class:
*
* P(c|x) p(x|c)p(c)
* ------- = --------------- = 1;
* P(c|x) p(x|c)p(c)
*
* where p(x|c) is the probability for point x
* along the fisher projection line. If the classes
* are bivariate gaussian then p(x|c) is simply
* given by a normal distribution:
*
* Φ(μ=(w,μ), σ=(w,Σw))
*
* The solution is then
*
* t = (b/a) + ((b/a)² - c/a);
*
* where
*
* 1. a = S² - S²
* 2. b = MS² - MS²
* 3. c = M²S² - M²S² - 2S²S² log(α)
* 4. α = p(c)/p(c)
*
*/
double fisher_cut(
double ratio,
gsl_vector *w,
sample_t *c1, sample_t *c2) {
/* Create a temporary vector variable */
gsl_vector *vtemp = gsl_vector_alloc(w->size);
/* Construct the covariances of each class... */
gsl_matrix *cov1 = normal_cov(&c1->p);
gsl_matrix *cov2 = normal_cov(&c2->p);
/* and the mean values */
gsl_vector *mu1 = normal_mean(&c1->p);
gsl_vector *mu2 = normal_mean(&c2->p);
/* Project the distribution onto the
* w line to get a 1D gaussian
*/
/* Mean: mi = (w, μi) */
double m1; gsl_blas_ddot(w, mu1, &m1);
double m2; gsl_blas_ddot(w, mu2, &m2);
/* Variance: vari = (w, covi⋅w)
*
* vtemp = coviw
* vari = wvtemp
*/
gsl_blas_dgemv(CblasNoTrans, 1, cov1, w, 0, vtemp);
double var1; gsl_blas_ddot(w, vtemp, &var1);
gsl_blas_dgemv(CblasNoTrans, 1, cov2, w, 0, vtemp);
double var2; gsl_blas_ddot(w, vtemp, &var2);
/* Solve the P(c₁|x) = P(c₂|x) equation:
*
* ax² - 2bx + c = 0
*
* with a,b,c given as above.
*
* */
double a = var1 - var2;
double b = m2*var1 + m1*var2;
double c = m2*m2*var1 - m1*m1*var2 + 2*var1*var2 * log(ratio);
// free memory
gsl_vector_free(mu1);
gsl_vector_free(mu2);
gsl_vector_free(vtemp);
gsl_matrix_free(cov1);
gsl_matrix_free(cov2);
return (b/a) + sqrt(pow(b/a, 2) - c/a);
}

66
ex-7/fisher.h Normal file
View File

@ -0,0 +1,66 @@
#include "common.h"
#include <gsl/gsl_matrix.h>
/* Builds the covariance matrix Σ
* from the standard parameters (σ, ρ)
* of a bivariate gaussian.
*/
gsl_matrix* normal_cov(struct par *p);
/* Builds the mean vector of
* a bivariate gaussian.
*/
gsl_vector* normal_mean(struct par *p);
/* `fisher_proj(c1, c2)` computes the optimal
* projection map, which maximises the separation
* between the two classes.
* The projection vector w is given by
*
* w = Sw¹ (μ - μ)
*
* where Sw = Σ + Σ is the so-called within-class
* covariance matrix.
*/
gsl_vector* fisher_proj(sample_t *c1, sample_t *c2);
/* `fisher_cut(ratio, w, c1, c2)` computes
* the threshold (cut), on the line given by
* `w`, to discriminates the classes `c1`, `c2`;
* with `ratio` being the ratio of their prior
* probabilities.
*
* The cut is fixed by the condition of
* conditional probability being the
* same for each class:
*
* P(c|x) p(x|c)p(c)
* ------- = --------------- = 1;
* P(c|x) p(x|c)p(c)
*
* where p(x|c) is the probability for point x
* along the fisher projection line. If the classes
* are bivariate gaussian then p(x|c) is simply
* given by a normal distribution:
*
* Φ(μ=(w,μ), σ=(w,Σw))
*
* The solution is then
*
* t = (b/a) + ((b/a)² - c/a);
*
* where
*
* 1. a = S² - S²
* 2. b = MS² - MS²
* 3. c = M²S² - M²S² - 2S²S² log(α)
* 4. α = p(c)/p(c)
*
*/
double fisher_cut(
double ratio,
gsl_vector *w,
sample_t *c1, sample_t *c2);

View File

@ -1,383 +1,38 @@
#include <stdio.h> #include <stdio.h>
#include <math.h> #include <string.h>
#include <gsl/gsl_rng.h> #include "fisher.h"
#include <gsl/gsl_randist.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_linalg.h>
/* Parameters for bivariate /* Options for the program */
* gaussian PDF struct options {
*/ char *mode;
struct par { size_t nsig;
double x0; // x mean size_t nnoise;
double y0; // y mean
double sigma_x; // x standard dev
double sigma_y; // y standard dev
double rho; // correlation: cov(x,y)/σx⋅σy
}; };
/* A sample of N 2D points is an int main(int argc, char **argv) {
* N×2 matrix, with vectors as rows. /* Set default options */
*/ struct options opts;
typedef struct { opts.mode = "fisher";
struct par p; opts.nsig = 800;
gsl_matrix *data; opts.nnoise = 1000;
} sample_t;
/* Process CLI arguments */
/* Create a sample of `n` points */ for (size_t i = 1; i < argc; i++) {
sample_t* sample_t_alloc(size_t n, struct par p) { if (!strcmp(argv[i], "-m")) opts.mode = argv[++i];
sample_t *x = malloc(sizeof(sample_t)); else if (!strcmp(argv[i], "-s")) opts.nsig = atol(argv[++i]);
x->p = p; else if (!strcmp(argv[i], "-n")) opts.nnoise = atol(argv[++i]);
x->data = gsl_matrix_alloc(n, 2); else {
return x; fprintf(stderr, "Usage: %s -[hiIntp]\n", argv[0]);
fprintf(stderr, "\t-h\tShow this message.\n");
fprintf(stderr, "\t-m MODE\tThe disciminant to use: 'fisher' for "
"Fisher linear discriminant, 'percep' for perceptron.\n");
fprintf(stderr, "\t-s N\tThe number of events in signal class.\n");
fprintf(stderr, "\t-n N\tThe number of events in noise class.\n");
return EXIT_FAILURE;
}
} }
/* Delete a sample */
void sample_t_free(sample_t *x) {
gsl_matrix_free(x->data);
free(x);
}
/* `generate_normal(r, n, p)` will create
* a sample of `n` points, distributed
* according to a bivariate gaussian distribution
* of parameters `p`.
*/
sample_t* generate_normal(
gsl_rng *r, size_t n, struct par *p) {
sample_t *s = sample_t_alloc(n, *p);
for (size_t i = 0; i < n; i++) {
/* Generate a vector (x,y) with
* a standard (μ = 0) bivariate
* gaussian PDF.
*/
double *x = gsl_matrix_ptr(s->data, i, 0);
double *y = gsl_matrix_ptr(s->data, i, 1);
gsl_ran_bivariate_gaussian(
r,
p->sigma_x, p->sigma_y, p->rho,
x, y);
/* Shift the vector to (x₀,y₀) */
*x += p->x0;
*y += p->y0;
}
return s;
}
/* Builds the covariance matrix Σ
* from the standard parameters (σ, ρ)
* of a bivariate gaussian.
*/
gsl_matrix* normal_cov(struct par *p) {
double var_x = pow(p->sigma_x, 2);
double var_y = pow(p->sigma_y, 2);
double cov_xy = p->rho * p->sigma_x * p->sigma_y;
gsl_matrix *cov = gsl_matrix_alloc(2, 2);
gsl_matrix_set(cov, 0, 0, var_x);
gsl_matrix_set(cov, 1, 1, var_y);
gsl_matrix_set(cov, 0, 1, cov_xy);
gsl_matrix_set(cov, 1, 0, cov_xy);
return cov;
}
/* Builds the mean vector of
* a bivariate gaussian.
*/
gsl_vector* normal_mean(struct par *p) {
gsl_vector *mu = gsl_vector_alloc(2);
gsl_vector_set(mu, 0, p->x0);
gsl_vector_set(mu, 1, p->y0);
return mu;
}
/* `fisher_proj(c1, c2)` computes the optimal
* projection map, which maximises the separation
* between the two classes.
* The projection vector w is given by
*
* w = Sw¹ (μ - μ)
*
* where Sw = Σ + Σ is the so-called within-class
* covariance matrix.
*/
gsl_vector* fisher_proj(sample_t *c1, sample_t *c2) {
/* Construct the covariances of each class... */
gsl_matrix *cov1 = normal_cov(&c1->p);
gsl_matrix *cov2 = normal_cov(&c2->p);
/* and the mean values */
gsl_vector *mu1 = normal_mean(&c1->p);
gsl_vector *mu2 = normal_mean(&c2->p);
/* Compute the inverse of the within-class
* covariance Sw¹.
* Note: by definition Σ is symmetrical and
* positive-definite, so Cholesky is appropriate.
*/
gsl_matrix_add(cov1, cov2);
gsl_linalg_cholesky_decomp(cov1);
gsl_linalg_cholesky_invert(cov1);
/* Compute the difference of the means. */
gsl_vector *diff = gsl_vector_alloc(2);
gsl_vector_memcpy(diff, mu2);
gsl_vector_sub(diff, mu1);
/* Finally multiply diff by Sw.
* This uses the rather low-level CBLAS
* functions gsl_blas_dgemv:
*
* ___ double ___ 1 ___ nothing
* / / /
* dgemv computes y := α op(A)x + βy
* \ \__matrix-vector \____ 0
* \__ A is symmetric
*/
gsl_vector *w = gsl_vector_alloc(2);
gsl_blas_dgemv(
CblasNoTrans, // do nothing on A
1, // α = 1
cov1, // matrix A
diff, // vector x
0, // β = 0
w); // vector y
// free memory
gsl_matrix_free(cov1);
gsl_matrix_free(cov2);
gsl_vector_free(mu1);
gsl_vector_free(mu2);
gsl_vector_free(diff);
return w;
}
/* Computes the determinant from the
* Cholesky decomposition of matrix.
* In this case it's simply the product
* of the diagonal elements, squared.
*/
double gsl_linalg_cholesky_det(gsl_matrix *LL) {
gsl_vector diag = gsl_matrix_diagonal(LL).vector;
double det = 1;
for (size_t i = 0; i < LL->size1; i++)
det *= gsl_vector_get(&diag, i);
return det * det;
}
/* `fisher_cut(ratio, w, c1, c2)` computes
* the threshold (cut), on the line given by
* `w`, to discriminates the classes `c1`, `c2`;
* with `ratio` being the ratio of their prior
* probabilities.
*
* The cut is fixed by the condition of
* conditional probability being the
* same for each class:
*
* P(c|x) p(x|c)p(c)
* ------- = --------------- = 1;
* P(c|x) p(x|c)p(c)
*
* together with x = tw.
*
* If p(x|c) is a bivariate normal PDF the
* solution is found to be:
*
* t = (b/a) + ((b/a)² - c/a);
*
* where
*
* 1. a = (w, (Σ¹ - Σ¹)w)
* 2. b = (w, Σ¹μ - Σ¹μ)
* 3. c = (μ, Σ¹μ) - (μ, Σ¹μ) + log|Σ|/log|Σ| - 2 log(α)
* 4. α = p(c)/p(c)
*
*/
double fisher_cut(
double ratio,
gsl_vector *w,
sample_t *c1, sample_t *c2) {
/* Construct the covariances of each class... */
gsl_matrix *cov1 = normal_cov(&c1->p);
gsl_matrix *cov2 = normal_cov(&c2->p);
/* and the mean values */
gsl_vector *mu1 = normal_mean(&c1->p);
gsl_vector *mu2 = normal_mean(&c2->p);
/* Temporary vector/matrix for
* intermediate results.
*/
gsl_matrix *mtemp = gsl_matrix_alloc(cov1->size1, cov1->size2);
gsl_vector *vtemp = gsl_vector_alloc(w->size);
/* Invert Σ₁ and Σ₂ in-place:
* we only need the inverse matrices
* in the steps to follow.
*/
gsl_linalg_cholesky_decomp(cov1);
gsl_linalg_cholesky_decomp(cov2);
// store determinant for later
double det1 = gsl_linalg_cholesky_det(cov1);
double det2 = gsl_linalg_cholesky_det(cov2);
gsl_linalg_cholesky_invert(cov1);
gsl_linalg_cholesky_invert(cov2);
/* Compute the first term:
*
* a = (w, (Σ¹ - Σ¹)w)
*
*/
// mtemp = cov1 - cov2
gsl_matrix_memcpy(mtemp, cov1);
gsl_matrix_sub(mtemp, cov2);
// vtemp = mtemp ⋅ vtemp
gsl_vector_memcpy(vtemp, w);
gsl_blas_dgemv(CblasNoTrans, 1, mtemp, w, 0, vtemp);
// a = (w, vtemp)
double a; gsl_blas_ddot(w, vtemp, &a);
/* Compute the second term:
*
* b = (w, Σ¹μ - Σ¹μ)
*
*/
// vtemp = cov1 ⋅ mu1
// vtemp = cov2 ⋅ mu2 - vtemp
gsl_blas_dgemv(CblasNoTrans, 1, cov2, mu2, 0, vtemp);
gsl_blas_dgemv(CblasNoTrans, 1, cov1, mu1, -1, vtemp);
// b = (w, vtemp)
double b; gsl_blas_ddot(w, vtemp, &b);
/* Compute the last term:
*
* c = log|Σ|/|Σ| + (μ, Σ¹μ) - (μ, Σ¹μ)
*
*/
double c, temp;
c = log(det1 / det2) - 2*log(ratio);
gsl_blas_dgemv(CblasNoTrans, 1, cov1, mu1, 0, vtemp);
gsl_blas_ddot(mu1, vtemp, &temp);
c += temp;
gsl_blas_dgemv(CblasNoTrans, 1, cov2, mu2, 0, vtemp);
gsl_blas_ddot(mu2, vtemp, &temp);
c -= temp;
/* To get the thresold value we have to
* multiply t by |w| if not normalised
*/
double norm; gsl_blas_ddot(w, w, &norm);
// free memory
gsl_vector_free(mu1);
gsl_vector_free(mu2);
gsl_vector_free(vtemp);
gsl_matrix_free(cov1);
gsl_matrix_free(cov2);
gsl_matrix_free(mtemp);
return ((b/a) + sqrt(pow(b/a, 2) - c/a)) * norm;
}
/* `fisher_cut2(ratio, w, c1, c2)` computes
* the threshold (cut), on the line given by
* `w`, to discriminates the classes `c1`, `c2`;
* with `ratio` being the ratio of their prior
* probabilities.
*
* The cut is fixed by the condition of
* conditional probability being the
* same for each class:
*
* P(c|x) p(x|c)p(c)
* ------- = --------------- = 1;
* P(c|x) p(x|c)p(c)
*
* where p(x|c) is the probability for point x
* along the fisher projection line. If the classes
* are bivariate gaussian then p(x|c) is simply
* given by a normal distribution:
*
* Φ(μ=(w,μ), σ=(w,Σw))
*
* The solution is then
*
* t = (b/a) + ((b/a)² - c/a);
*
* where
*
* 1. a = S² - S²
* 2. b = MS² - MS²
* 3. c = M²S² - M²S² - 2S²S² log(α)
* 4. α = p(c)/p(c)
*
*/
double fisher_cut2(
double ratio,
gsl_vector *w,
sample_t *c1, sample_t *c2) {
gsl_vector *vtemp = gsl_vector_alloc(w->size);
/* Construct the covariances of each class... */
gsl_matrix *cov1 = normal_cov(&c1->p);
gsl_matrix *cov2 = normal_cov(&c2->p);
/* and the mean values */
gsl_vector *mu1 = normal_mean(&c1->p);
gsl_vector *mu2 = normal_mean(&c2->p);
/* Project the distribution onto the
* w line to get a 1D gaussian
*/
// mean
double m1; gsl_blas_ddot(w, mu1, &m1);
double m2; gsl_blas_ddot(w, mu2, &m2);
// variances
gsl_blas_dgemv(CblasNoTrans, 1, cov1, w, 0, vtemp);
double var1; gsl_blas_ddot(w, vtemp, &var1);
gsl_blas_dgemv(CblasNoTrans, 1, cov2, w, 0, vtemp);
double var2; gsl_blas_ddot(w, vtemp, &var2);
double a = var1 - var2;
double b = m2*var1 + m1*var2;
double c = m2*m2*var1 - m1*m1*var2 + 2*var1*var2 * log(ratio);
// free memory
gsl_vector_free(mu1);
gsl_vector_free(mu2);
gsl_vector_free(vtemp);
gsl_matrix_free(cov1);
gsl_matrix_free(cov2);
return (b/a) + sqrt(pow(b/a, 2) - c/a);
}
int main(int argc, char **args) {
// initialize RNG // initialize RNG
gsl_rng_env_setup(); gsl_rng_env_setup();
gsl_rng *r = gsl_rng_alloc(gsl_rng_default); gsl_rng *r = gsl_rng_alloc(gsl_rng_default);
@ -389,13 +44,10 @@ int main(int argc, char **args) {
struct par par_sig = { 0, 0, 0.3, 0.3, 0.5 }; struct par par_sig = { 0, 0, 0.3, 0.3, 0.5 };
struct par par_noise = { 4, 4, 1.0, 1.0, 0.4 }; struct par par_noise = { 4, 4, 1.0, 1.0, 0.4 };
// sample sizes sample_t *signal = generate_normal(r, opts.nsig, &par_sig);
size_t nsig = 800; sample_t *noise = generate_normal(r, opts.nnoise, &par_noise);
size_t nnoise = 1000;
sample_t *signal = generate_normal(r, nsig, &par_sig);
sample_t *noise = generate_normal(r, nnoise, &par_noise);
if (!strcmp(opts.mode, "fisher")) {
/* Fisher linear discriminant /* Fisher linear discriminant
* *
* First calculate the direction w onto * First calculate the direction w onto
@ -403,9 +55,9 @@ int main(int argc, char **args) {
* cut which determines the class for each * cut which determines the class for each
* projected point. * projected point.
*/ */
double ratio = opts.nsig / (double)opts.nnoise;
gsl_vector *w = fisher_proj(signal, noise); gsl_vector *w = fisher_proj(signal, noise);
double t_cut = fisher_cut2(nsig / (double)nnoise, double t_cut = fisher_cut(ratio, w, signal, noise);
w, signal, noise);
fputs("# Linear Fisher discriminant\n\n", stderr); fputs("# Linear Fisher discriminant\n\n", stderr);
fprintf(stderr, "* w: [%.3f, %.3f]\n", fprintf(stderr, "* w: [%.3f, %.3f]\n",
@ -415,12 +67,13 @@ int main(int argc, char **args) {
gsl_vector_fprintf(stdout, w, "%g"); gsl_vector_fprintf(stdout, w, "%g");
printf("%f\n", t_cut); printf("%f\n", t_cut);
}
/* Print data to stdout for plotting. /* Print data to stdout for plotting.
* Note: we print the sizes to be able * Note: we print the sizes to be able
* to set apart the two matrices. * to set apart the two matrices.
*/ */
printf("%ld %ld %d\n", nsig, nnoise, 2); printf("%ld %ld %d\n", opts.nsig, opts.nnoise, 2);
gsl_matrix_fprintf(stdout, signal->data, "%g"); gsl_matrix_fprintf(stdout, signal->data, "%g");
gsl_matrix_fprintf(stdout, noise->data, "%g"); gsl_matrix_fprintf(stdout, noise->data, "%g");

View File

@ -12,7 +12,7 @@ ex-1/bin/%: ex-1/%.c
ex-2/bin/%: ex-2/%.c ex-2/bin/%: ex-2/%.c
$(CCOMPILE) $(CCOMPILE)
ex-3/bin/main: ex-3/common.c ex-3/likelihood.c ex-3/chisquared.c ex-3/bin/main: ex-3/main.c ex-3/common.c ex-3/likelihood.c ex-3/chisquared.c
$(CCOMPILE) $(CCOMPILE)
ex-4/bin/main: ex-4/main.c ex-4/bin/main: ex-4/main.c
@ -24,7 +24,7 @@ ex-5/bin/%: ex-5/%.c
ex-6/bin/main: ex-6/rl.c ex-6/fft.c ex-6/bin/main: ex-6/rl.c ex-6/fft.c
$(CCOMPILE) $(CCOMPILE)
ex-7/main: ex-7/main.c ex-7/bin/main: ex-7/main.c ex-7/common.c ex-7/fisher.c
$(CCOMPILE) $(CCOMPILE)
misc/pdfs: misc/pdfs.c misc/pdfs: misc/pdfs.c