From f3293ba8086907c7544d654df5b247da4fade292 Mon Sep 17 00:00:00 2001 From: rnhmjoj Date: Fri, 6 Mar 2020 10:54:28 +0000 Subject: [PATCH] ex-7: split into multiple files --- ex-7/common.c | 46 ++++++ ex-7/common.h | 40 +++++ ex-7/fisher.c | 186 +++++++++++++++++++++ ex-7/fisher.h | 66 ++++++++ ex-7/main.c | 447 ++++++-------------------------------------------- makefile | 4 +- 6 files changed, 390 insertions(+), 399 deletions(-) create mode 100644 ex-7/common.c create mode 100644 ex-7/common.h create mode 100644 ex-7/fisher.c create mode 100644 ex-7/fisher.h diff --git a/ex-7/common.c b/ex-7/common.c new file mode 100644 index 0000000..6ba5d07 --- /dev/null +++ b/ex-7/common.c @@ -0,0 +1,46 @@ +#include "common.h" +#include + +/* Create a sample of `n` points */ +sample_t* sample_t_alloc(size_t n, struct par p) { + sample_t *x = malloc(sizeof(sample_t)); + x->p = p; + x->data = gsl_matrix_alloc(n, 2); + return x; +} + +/* Delete a sample */ +void sample_t_free(sample_t *x) { + gsl_matrix_free(x->data); + free(x); +} + + +/* `generate_normal(r, n, p)` will create + * a sample of `n` points, distributed + * according to a bivariate gaussian distribution + * of parameters `p`. + */ +sample_t* generate_normal( + gsl_rng *r, size_t n, struct par *p) { + sample_t *s = sample_t_alloc(n, *p); + + for (size_t i = 0; i < n; i++) { + /* Generate a vector (x,y) with + * a standard (μ = 0) bivariate + * gaussian PDF. + */ + double *x = gsl_matrix_ptr(s->data, i, 0); + double *y = gsl_matrix_ptr(s->data, i, 1); + gsl_ran_bivariate_gaussian( + r, + p->sigma_x, p->sigma_y, p->rho, + x, y); + + /* Shift the vector to (x₀,y₀) */ + *x += p->x0; + *y += p->y0; + } + + return s; +} diff --git a/ex-7/common.h b/ex-7/common.h new file mode 100644 index 0000000..f723b3c --- /dev/null +++ b/ex-7/common.h @@ -0,0 +1,40 @@ +#pragma once + +#include +#include + +/* Parameters for bivariate + * gaussian PDF + */ +struct par { + double x0; // x mean + double y0; // y mean + double sigma_x; // x standard dev + double sigma_y; // y standard dev + double rho; // correlation: cov(x,y)/σx⋅σy +}; + + +/* A sample of N 2D points is an + * N×2 matrix, with vectors as rows. + */ +typedef struct { + struct par p; + gsl_matrix *data; +} sample_t; + + +/* Create a sample of `n` points */ +sample_t* sample_t_alloc(size_t n, struct par p); + + +/* Delete a sample */ +void sample_t_free(sample_t *x); + + +/* `generate_normal(r, n, p)` will create + * a sample of `n` points, distributed + * according to a bivariate gaussian distribution + * of parameters `p`. + */ +sample_t* generate_normal(gsl_rng *r, size_t n, struct par *p); diff --git a/ex-7/fisher.c b/ex-7/fisher.c new file mode 100644 index 0000000..9a48499 --- /dev/null +++ b/ex-7/fisher.c @@ -0,0 +1,186 @@ +#include "fisher.h" +#include +#include +#include + +/* Builds the covariance matrix Σ + * from the standard parameters (σ, ρ) + * of a bivariate gaussian. + */ +gsl_matrix* normal_cov(struct par *p) { + double var_x = pow(p->sigma_x, 2); + double var_y = pow(p->sigma_y, 2); + double cov_xy = p->rho * p->sigma_x * p->sigma_y; + + gsl_matrix *cov = gsl_matrix_alloc(2, 2); + gsl_matrix_set(cov, 0, 0, var_x); + gsl_matrix_set(cov, 1, 1, var_y); + gsl_matrix_set(cov, 0, 1, cov_xy); + gsl_matrix_set(cov, 1, 0, cov_xy); + + return cov; +} + + +/* Builds the mean vector of + * a bivariate gaussian. + */ +gsl_vector* normal_mean(struct par *p) { + gsl_vector *mu = gsl_vector_alloc(2); + gsl_vector_set(mu, 0, p->x0); + gsl_vector_set(mu, 1, p->y0); + + return mu; +} + + +/* `fisher_proj(c1, c2)` computes the optimal + * projection map, which maximises the separation + * between the two classes. + * The projection vector w is given by + * + * w = Sw⁻¹ (μ₂ - μ₁) + * + * where Sw = Σ₁ + Σ₂ is the so-called within-class + * covariance matrix. + */ +gsl_vector* fisher_proj(sample_t *c1, sample_t *c2) { + /* Construct the covariances of each class... */ + gsl_matrix *cov1 = normal_cov(&c1->p); + gsl_matrix *cov2 = normal_cov(&c2->p); + + /* and the mean values */ + gsl_vector *mu1 = normal_mean(&c1->p); + gsl_vector *mu2 = normal_mean(&c2->p); + + /* Compute the inverse of the within-class + * covariance Sw⁻¹. + * Note: by definition Σ is symmetrical and + * positive-definite, so Cholesky is appropriate. + */ + gsl_matrix_add(cov1, cov2); + gsl_linalg_cholesky_decomp(cov1); + gsl_linalg_cholesky_invert(cov1); + + /* Compute the difference of the means. */ + gsl_vector *diff = gsl_vector_alloc(2); + gsl_vector_memcpy(diff, mu2); + gsl_vector_sub(diff, mu1); + + /* Finally multiply diff by Sw. + * This uses the rather low-level CBLAS + * functions gsl_blas_dgemv: + * + * ___ double ___ 1 ___ nothing + * / / / + * dgemv computes y := α op(A)x + βy + * \ \__matrix-vector \____ 0 + * \__ A is symmetric + */ + gsl_vector *w = gsl_vector_alloc(2); + gsl_blas_dgemv( + CblasNoTrans, // do nothing on A + 1, // α = 1 + cov1, // matrix A + diff, // vector x + 0, // β = 0 + w); // vector y + + // free memory + gsl_matrix_free(cov1); + gsl_matrix_free(cov2); + gsl_vector_free(mu1); + gsl_vector_free(mu2); + gsl_vector_free(diff); + + return w; +} + + +/* `fisher_cut(ratio, w, c1, c2)` computes + * the threshold (cut), on the line given by + * `w`, to discriminates the classes `c1`, `c2`; + * with `ratio` being the ratio of their prior + * probabilities. + * + * The cut is fixed by the condition of + * conditional probability being the + * same for each class: + * + * P(c₁|x) p(x|c₁)⋅p(c₁) + * ------- = --------------- = 1; + * P(c₂|x) p(x|c₁)⋅p(c₂) + * + * where p(x|c) is the probability for point x + * along the fisher projection line. If the classes + * are bivariate gaussian then p(x|c) is simply + * given by a normal distribution: + * + * Φ(μ=(w,μ), σ=(w,Σw)) + * + * The solution is then + * + * t = (b/a) + √((b/a)² - c/a); + * + * where + * + * 1. a = S₁² - S₂² + * 2. b = M₂S₁² - M₁S₂² + * 3. c = M₂²S₁² - M₁²S₂² - 2S₁²S₂² log(α) + * 4. α = p(c₁)/p(c₂) + * + */ +double fisher_cut( + double ratio, + gsl_vector *w, + sample_t *c1, sample_t *c2) { + + /* Create a temporary vector variable */ + gsl_vector *vtemp = gsl_vector_alloc(w->size); + + /* Construct the covariances of each class... */ + gsl_matrix *cov1 = normal_cov(&c1->p); + gsl_matrix *cov2 = normal_cov(&c2->p); + + /* and the mean values */ + gsl_vector *mu1 = normal_mean(&c1->p); + gsl_vector *mu2 = normal_mean(&c2->p); + + /* Project the distribution onto the + * w line to get a 1D gaussian + */ + + /* Mean: mi = (w, μi) */ + double m1; gsl_blas_ddot(w, mu1, &m1); + double m2; gsl_blas_ddot(w, mu2, &m2); + + /* Variance: vari = (w, covi⋅w) + * + * vtemp = covi⋅w + * vari = w⋅vtemp + */ + gsl_blas_dgemv(CblasNoTrans, 1, cov1, w, 0, vtemp); + double var1; gsl_blas_ddot(w, vtemp, &var1); + gsl_blas_dgemv(CblasNoTrans, 1, cov2, w, 0, vtemp); + double var2; gsl_blas_ddot(w, vtemp, &var2); + + /* Solve the P(c₁|x) = P(c₂|x) equation: + * + * ax² - 2bx + c = 0 + * + * with a,b,c given as above. + * + * */ + double a = var1 - var2; + double b = m2*var1 + m1*var2; + double c = m2*m2*var1 - m1*m1*var2 + 2*var1*var2 * log(ratio); + + // free memory + gsl_vector_free(mu1); + gsl_vector_free(mu2); + gsl_vector_free(vtemp); + gsl_matrix_free(cov1); + gsl_matrix_free(cov2); + + return (b/a) + sqrt(pow(b/a, 2) - c/a); +} diff --git a/ex-7/fisher.h b/ex-7/fisher.h new file mode 100644 index 0000000..134fa0e --- /dev/null +++ b/ex-7/fisher.h @@ -0,0 +1,66 @@ +#include "common.h" +#include + +/* Builds the covariance matrix Σ + * from the standard parameters (σ, ρ) + * of a bivariate gaussian. + */ +gsl_matrix* normal_cov(struct par *p); + + +/* Builds the mean vector of + * a bivariate gaussian. + */ +gsl_vector* normal_mean(struct par *p); + + +/* `fisher_proj(c1, c2)` computes the optimal + * projection map, which maximises the separation + * between the two classes. + * The projection vector w is given by + * + * w = Sw⁻¹ (μ₂ - μ₁) + * + * where Sw = Σ₁ + Σ₂ is the so-called within-class + * covariance matrix. + */ +gsl_vector* fisher_proj(sample_t *c1, sample_t *c2); + + +/* `fisher_cut(ratio, w, c1, c2)` computes + * the threshold (cut), on the line given by + * `w`, to discriminates the classes `c1`, `c2`; + * with `ratio` being the ratio of their prior + * probabilities. + * + * The cut is fixed by the condition of + * conditional probability being the + * same for each class: + * + * P(c₁|x) p(x|c₁)⋅p(c₁) + * ------- = --------------- = 1; + * P(c₂|x) p(x|c₁)⋅p(c₂) + * + * where p(x|c) is the probability for point x + * along the fisher projection line. If the classes + * are bivariate gaussian then p(x|c) is simply + * given by a normal distribution: + * + * Φ(μ=(w,μ), σ=(w,Σw)) + * + * The solution is then + * + * t = (b/a) + √((b/a)² - c/a); + * + * where + * + * 1. a = S₁² - S₂² + * 2. b = M₂S₁² - M₁S₂² + * 3. c = M₂²S₁² - M₁²S₂² - 2S₁²S₂² log(α) + * 4. α = p(c₁)/p(c₂) + * + */ +double fisher_cut( + double ratio, + gsl_vector *w, + sample_t *c1, sample_t *c2); diff --git a/ex-7/main.c b/ex-7/main.c index 34a6232..ca90541 100644 --- a/ex-7/main.c +++ b/ex-7/main.c @@ -1,383 +1,38 @@ #include -#include -#include -#include -#include -#include +#include +#include "fisher.h" -/* Parameters for bivariate - * gaussian PDF - */ -struct par { - double x0; // x mean - double y0; // y mean - double sigma_x; // x standard dev - double sigma_y; // y standard dev - double rho; // correlation: cov(x,y)/σx⋅σy +/* Options for the program */ +struct options { + char *mode; + size_t nsig; + size_t nnoise; }; -/* A sample of N 2D points is an - * N×2 matrix, with vectors as rows. - */ -typedef struct { - struct par p; - gsl_matrix *data; -} sample_t; +int main(int argc, char **argv) { + /* Set default options */ + struct options opts; + opts.mode = "fisher"; + opts.nsig = 800; + opts.nnoise = 1000; - -/* Create a sample of `n` points */ -sample_t* sample_t_alloc(size_t n, struct par p) { - sample_t *x = malloc(sizeof(sample_t)); - x->p = p; - x->data = gsl_matrix_alloc(n, 2); - return x; -} - -/* Delete a sample */ -void sample_t_free(sample_t *x) { - gsl_matrix_free(x->data); - free(x); -} - - -/* `generate_normal(r, n, p)` will create - * a sample of `n` points, distributed - * according to a bivariate gaussian distribution - * of parameters `p`. - */ -sample_t* generate_normal( - gsl_rng *r, size_t n, struct par *p) { - sample_t *s = sample_t_alloc(n, *p); - - for (size_t i = 0; i < n; i++) { - /* Generate a vector (x,y) with - * a standard (μ = 0) bivariate - * gaussian PDF. - */ - double *x = gsl_matrix_ptr(s->data, i, 0); - double *y = gsl_matrix_ptr(s->data, i, 1); - gsl_ran_bivariate_gaussian( - r, - p->sigma_x, p->sigma_y, p->rho, - x, y); - - /* Shift the vector to (x₀,y₀) */ - *x += p->x0; - *y += p->y0; + /* Process CLI arguments */ + for (size_t i = 1; i < argc; i++) { + if (!strcmp(argv[i], "-m")) opts.mode = argv[++i]; + else if (!strcmp(argv[i], "-s")) opts.nsig = atol(argv[++i]); + else if (!strcmp(argv[i], "-n")) opts.nnoise = atol(argv[++i]); + else { + fprintf(stderr, "Usage: %s -[hiIntp]\n", argv[0]); + fprintf(stderr, "\t-h\tShow this message.\n"); + fprintf(stderr, "\t-m MODE\tThe disciminant to use: 'fisher' for " + "Fisher linear discriminant, 'percep' for perceptron.\n"); + fprintf(stderr, "\t-s N\tThe number of events in signal class.\n"); + fprintf(stderr, "\t-n N\tThe number of events in noise class.\n"); + return EXIT_FAILURE; + } } - return s; -} - - -/* Builds the covariance matrix Σ - * from the standard parameters (σ, ρ) - * of a bivariate gaussian. - */ -gsl_matrix* normal_cov(struct par *p) { - double var_x = pow(p->sigma_x, 2); - double var_y = pow(p->sigma_y, 2); - double cov_xy = p->rho * p->sigma_x * p->sigma_y; - - gsl_matrix *cov = gsl_matrix_alloc(2, 2); - gsl_matrix_set(cov, 0, 0, var_x); - gsl_matrix_set(cov, 1, 1, var_y); - gsl_matrix_set(cov, 0, 1, cov_xy); - gsl_matrix_set(cov, 1, 0, cov_xy); - - return cov; -} - - -/* Builds the mean vector of - * a bivariate gaussian. - */ -gsl_vector* normal_mean(struct par *p) { - gsl_vector *mu = gsl_vector_alloc(2); - gsl_vector_set(mu, 0, p->x0); - gsl_vector_set(mu, 1, p->y0); - - return mu; -} - - -/* `fisher_proj(c1, c2)` computes the optimal - * projection map, which maximises the separation - * between the two classes. - * The projection vector w is given by - * - * w = Sw⁻¹ (μ₂ - μ₁) - * - * where Sw = Σ₁ + Σ₂ is the so-called within-class - * covariance matrix. - */ -gsl_vector* fisher_proj(sample_t *c1, sample_t *c2) { - /* Construct the covariances of each class... */ - gsl_matrix *cov1 = normal_cov(&c1->p); - gsl_matrix *cov2 = normal_cov(&c2->p); - - /* and the mean values */ - gsl_vector *mu1 = normal_mean(&c1->p); - gsl_vector *mu2 = normal_mean(&c2->p); - - /* Compute the inverse of the within-class - * covariance Sw⁻¹. - * Note: by definition Σ is symmetrical and - * positive-definite, so Cholesky is appropriate. - */ - gsl_matrix_add(cov1, cov2); - gsl_linalg_cholesky_decomp(cov1); - gsl_linalg_cholesky_invert(cov1); - - /* Compute the difference of the means. */ - gsl_vector *diff = gsl_vector_alloc(2); - gsl_vector_memcpy(diff, mu2); - gsl_vector_sub(diff, mu1); - - /* Finally multiply diff by Sw. - * This uses the rather low-level CBLAS - * functions gsl_blas_dgemv: - * - * ___ double ___ 1 ___ nothing - * / / / - * dgemv computes y := α op(A)x + βy - * \ \__matrix-vector \____ 0 - * \__ A is symmetric - */ - gsl_vector *w = gsl_vector_alloc(2); - gsl_blas_dgemv( - CblasNoTrans, // do nothing on A - 1, // α = 1 - cov1, // matrix A - diff, // vector x - 0, // β = 0 - w); // vector y - - // free memory - gsl_matrix_free(cov1); - gsl_matrix_free(cov2); - gsl_vector_free(mu1); - gsl_vector_free(mu2); - gsl_vector_free(diff); - - return w; -} - - -/* Computes the determinant from the - * Cholesky decomposition of matrix. - * In this case it's simply the product - * of the diagonal elements, squared. - */ -double gsl_linalg_cholesky_det(gsl_matrix *LL) { - gsl_vector diag = gsl_matrix_diagonal(LL).vector; - double det = 1; - for (size_t i = 0; i < LL->size1; i++) - det *= gsl_vector_get(&diag, i); - return det * det; -} - - -/* `fisher_cut(ratio, w, c1, c2)` computes - * the threshold (cut), on the line given by - * `w`, to discriminates the classes `c1`, `c2`; - * with `ratio` being the ratio of their prior - * probabilities. - * - * The cut is fixed by the condition of - * conditional probability being the - * same for each class: - * - * P(c₁|x) p(x|c₁)⋅p(c₁) - * ------- = --------------- = 1; - * P(c₂|x) p(x|c₁)⋅p(c₂) - * - * together with x = t⋅w. - * - * If p(x|c) is a bivariate normal PDF the - * solution is found to be: - * - * t = (b/a) + √((b/a)² - c/a); - * - * where - * - * 1. a = (w, (Σ₁⁻¹ - Σ₂⁻¹)w) - * 2. b = (w, Σ₁⁻¹μ₁ - Σ₂⁻¹μ₂) - * 3. c = (μ₁, Σ₁⁻¹μ₁) - (μ₂, Σ₂⁻¹μ₂) + log|Σ₂|/log|Σ₁| - 2 log(α) - * 4. α = p(c₁)/p(c₂) - * - */ -double fisher_cut( - double ratio, - gsl_vector *w, - sample_t *c1, sample_t *c2) { - - /* Construct the covariances of each class... */ - gsl_matrix *cov1 = normal_cov(&c1->p); - gsl_matrix *cov2 = normal_cov(&c2->p); - - /* and the mean values */ - gsl_vector *mu1 = normal_mean(&c1->p); - gsl_vector *mu2 = normal_mean(&c2->p); - - /* Temporary vector/matrix for - * intermediate results. - */ - gsl_matrix *mtemp = gsl_matrix_alloc(cov1->size1, cov1->size2); - gsl_vector *vtemp = gsl_vector_alloc(w->size); - - /* Invert Σ₁ and Σ₂ in-place: - * we only need the inverse matrices - * in the steps to follow. - */ - gsl_linalg_cholesky_decomp(cov1); - gsl_linalg_cholesky_decomp(cov2); - // store determinant for later - double det1 = gsl_linalg_cholesky_det(cov1); - double det2 = gsl_linalg_cholesky_det(cov2); - gsl_linalg_cholesky_invert(cov1); - gsl_linalg_cholesky_invert(cov2); - - /* Compute the first term: - * - * a = (w, (Σ₁⁻¹ - Σ₂⁻¹)w) - * - */ - // mtemp = cov1 - cov2 - gsl_matrix_memcpy(mtemp, cov1); - gsl_matrix_sub(mtemp, cov2); - - // vtemp = mtemp ⋅ vtemp - gsl_vector_memcpy(vtemp, w); - gsl_blas_dgemv(CblasNoTrans, 1, mtemp, w, 0, vtemp); - - // a = (w, vtemp) - double a; gsl_blas_ddot(w, vtemp, &a); - - /* Compute the second term: - * - * b = (w, Σ₁⁻¹μ₁ - Σ₂⁻¹μ₂) - * - */ - // vtemp = cov1 ⋅ mu1 - // vtemp = cov2 ⋅ mu2 - vtemp - gsl_blas_dgemv(CblasNoTrans, 1, cov2, mu2, 0, vtemp); - gsl_blas_dgemv(CblasNoTrans, 1, cov1, mu1, -1, vtemp); - - // b = (w, vtemp) - double b; gsl_blas_ddot(w, vtemp, &b); - - /* Compute the last term: - * - * c = log|Σ₂|/|Σ₁| + (μ₂, Σ₂⁻¹μ₂) - (μ₁, Σ₁⁻¹μ₁) - * - */ - double c, temp; - c = log(det1 / det2) - 2*log(ratio); - - gsl_blas_dgemv(CblasNoTrans, 1, cov1, mu1, 0, vtemp); - gsl_blas_ddot(mu1, vtemp, &temp); - c += temp; - - gsl_blas_dgemv(CblasNoTrans, 1, cov2, mu2, 0, vtemp); - gsl_blas_ddot(mu2, vtemp, &temp); - c -= temp; - - /* To get the thresold value we have to - * multiply t by |w| if not normalised - */ - double norm; gsl_blas_ddot(w, w, &norm); - - // free memory - gsl_vector_free(mu1); - gsl_vector_free(mu2); - gsl_vector_free(vtemp); - gsl_matrix_free(cov1); - gsl_matrix_free(cov2); - gsl_matrix_free(mtemp); - - return ((b/a) + sqrt(pow(b/a, 2) - c/a)) * norm; -} - - -/* `fisher_cut2(ratio, w, c1, c2)` computes - * the threshold (cut), on the line given by - * `w`, to discriminates the classes `c1`, `c2`; - * with `ratio` being the ratio of their prior - * probabilities. - * - * The cut is fixed by the condition of - * conditional probability being the - * same for each class: - * - * P(c₁|x) p(x|c₁)⋅p(c₁) - * ------- = --------------- = 1; - * P(c₂|x) p(x|c₁)⋅p(c₂) - * - * where p(x|c) is the probability for point x - * along the fisher projection line. If the classes - * are bivariate gaussian then p(x|c) is simply - * given by a normal distribution: - * - * Φ(μ=(w,μ), σ=(w,Σw)) - * - * The solution is then - * - * t = (b/a) + √((b/a)² - c/a); - * - * where - * - * 1. a = S₁² - S₂² - * 2. b = M₂S₁² - M₁S₂² - * 3. c = M₂²S₁² - M₁²S₂² - 2S₁²S₂² log(α) - * 4. α = p(c₁)/p(c₂) - * - */ -double fisher_cut2( - double ratio, - gsl_vector *w, - sample_t *c1, sample_t *c2) { - - gsl_vector *vtemp = gsl_vector_alloc(w->size); - - /* Construct the covariances of each class... */ - gsl_matrix *cov1 = normal_cov(&c1->p); - gsl_matrix *cov2 = normal_cov(&c2->p); - - /* and the mean values */ - gsl_vector *mu1 = normal_mean(&c1->p); - gsl_vector *mu2 = normal_mean(&c2->p); - - /* Project the distribution onto the - * w line to get a 1D gaussian - */ - // mean - double m1; gsl_blas_ddot(w, mu1, &m1); - double m2; gsl_blas_ddot(w, mu2, &m2); - - // variances - gsl_blas_dgemv(CblasNoTrans, 1, cov1, w, 0, vtemp); - double var1; gsl_blas_ddot(w, vtemp, &var1); - gsl_blas_dgemv(CblasNoTrans, 1, cov2, w, 0, vtemp); - double var2; gsl_blas_ddot(w, vtemp, &var2); - - double a = var1 - var2; - double b = m2*var1 + m1*var2; - double c = m2*m2*var1 - m1*m1*var2 + 2*var1*var2 * log(ratio); - - // free memory - gsl_vector_free(mu1); - gsl_vector_free(mu2); - gsl_vector_free(vtemp); - gsl_matrix_free(cov1); - gsl_matrix_free(cov2); - - return (b/a) + sqrt(pow(b/a, 2) - c/a); -} - - -int main(int argc, char **args) { // initialize RNG gsl_rng_env_setup(); gsl_rng *r = gsl_rng_alloc(gsl_rng_default); @@ -389,38 +44,36 @@ int main(int argc, char **args) { struct par par_sig = { 0, 0, 0.3, 0.3, 0.5 }; struct par par_noise = { 4, 4, 1.0, 1.0, 0.4 }; - // sample sizes - size_t nsig = 800; - size_t nnoise = 1000; + sample_t *signal = generate_normal(r, opts.nsig, &par_sig); + sample_t *noise = generate_normal(r, opts.nnoise, &par_noise); - sample_t *signal = generate_normal(r, nsig, &par_sig); - sample_t *noise = generate_normal(r, nnoise, &par_noise); + if (!strcmp(opts.mode, "fisher")) { + /* Fisher linear discriminant + * + * First calculate the direction w onto + * which project the data points. Then the + * cut which determines the class for each + * projected point. + */ + double ratio = opts.nsig / (double)opts.nnoise; + gsl_vector *w = fisher_proj(signal, noise); + double t_cut = fisher_cut(ratio, w, signal, noise); - /* Fisher linear discriminant - * - * First calculate the direction w onto - * which project the data points. Then the - * cut which determines the class for each - * projected point. - */ - gsl_vector *w = fisher_proj(signal, noise); - double t_cut = fisher_cut2(nsig / (double)nnoise, - w, signal, noise); + fputs("# Linear Fisher discriminant\n\n", stderr); + fprintf(stderr, "* w: [%.3f, %.3f]\n", + gsl_vector_get(w, 0), + gsl_vector_get(w, 1)); + fprintf(stderr, "* t_cut: %.3f\n", t_cut); - fputs("# Linear Fisher discriminant\n\n", stderr); - fprintf(stderr, "* w: [%.3f, %.3f]\n", - gsl_vector_get(w, 0), - gsl_vector_get(w, 1)); - fprintf(stderr, "* t_cut: %.3f\n", t_cut); - - gsl_vector_fprintf(stdout, w, "%g"); - printf("%f\n", t_cut); + gsl_vector_fprintf(stdout, w, "%g"); + printf("%f\n", t_cut); + } /* Print data to stdout for plotting. - * Note: we print the sizes to be able + * Note: we print the sizes to be able * to set apart the two matrices. */ - printf("%ld %ld %d\n", nsig, nnoise, 2); + printf("%ld %ld %d\n", opts.nsig, opts.nnoise, 2); gsl_matrix_fprintf(stdout, signal->data, "%g"); gsl_matrix_fprintf(stdout, noise->data, "%g"); diff --git a/makefile b/makefile index 3a93937..03de3f9 100644 --- a/makefile +++ b/makefile @@ -12,7 +12,7 @@ ex-1/bin/%: ex-1/%.c ex-2/bin/%: ex-2/%.c $(CCOMPILE) -ex-3/bin/main: ex-3/common.c ex-3/likelihood.c ex-3/chisquared.c +ex-3/bin/main: ex-3/main.c ex-3/common.c ex-3/likelihood.c ex-3/chisquared.c $(CCOMPILE) ex-4/bin/main: ex-4/main.c @@ -24,7 +24,7 @@ ex-5/bin/%: ex-5/%.c ex-6/bin/main: ex-6/rl.c ex-6/fft.c $(CCOMPILE) -ex-7/main: ex-7/main.c +ex-7/bin/main: ex-7/main.c ex-7/common.c ex-7/fisher.c $(CCOMPILE) misc/pdfs: misc/pdfs.c