ex-4: χ² test and error estimation completed
This commit is contained in:
parent
52f25bfaba
commit
ebefc6db5a
86
ex-4/lib.c
Normal file
86
ex-4/lib.c
Normal file
@ -0,0 +1,86 @@
|
||||
#include "lib.h"
|
||||
|
||||
|
||||
// Minimization wrapper.
|
||||
//
|
||||
double chi2(double p_max, void* params)
|
||||
{
|
||||
// Pars parameters.
|
||||
struct parameters p = *((struct parameters*) params);
|
||||
struct bin* histo = p.histo;
|
||||
size_t n = p.n;
|
||||
double step = p.step;
|
||||
|
||||
// Compute χ².
|
||||
double chi = 0;
|
||||
double expecto = 0;
|
||||
for (size_t i = 0; i < n; i++)
|
||||
{
|
||||
expecto = expected((i + 0.5) * step, p_max);
|
||||
chi += pow(histo[i].sum - expecto, 2)/expecto;
|
||||
};
|
||||
return chi;
|
||||
}
|
||||
|
||||
|
||||
// Expected function.
|
||||
//
|
||||
double expected (double x, double p_max)
|
||||
{
|
||||
// When p_max < x, the argument under sqrt is negative. Return great number
|
||||
// to lead away the minimization.
|
||||
if (p_max < x)
|
||||
{
|
||||
double num = 500;
|
||||
return num;
|
||||
}
|
||||
return x * log(p_max/x)/atan(sqrt(fabs(pow(p_max, 2)/pow(x,2) - 1)));
|
||||
}
|
||||
|
||||
|
||||
// First derivative of the expected function.
|
||||
//
|
||||
double exp1d (double x, double p_max)
|
||||
{
|
||||
// When p_max < x, the argument under sqrt is negative. Return great number
|
||||
// to lead away the minimization.
|
||||
if (p_max < x)
|
||||
{
|
||||
double num = 500;
|
||||
return num;
|
||||
}
|
||||
double a = p_max;
|
||||
double A = sqrt(fabs(pow(a, 2)/pow(x,2) - 1));
|
||||
double B = atan(A);
|
||||
double C = log(a/x);
|
||||
return x/(a*B) - x*C/(a*A*pow(B, 2));
|
||||
}
|
||||
|
||||
//
|
||||
// Second derivative of the expected function.
|
||||
//
|
||||
double exp2d (double x, double p_max)
|
||||
{
|
||||
// When p_max < x, the argument under sqrt is negative. Return great number
|
||||
// to lead away the minimization.
|
||||
if (p_max < x)
|
||||
{
|
||||
double num = 500;
|
||||
return num;
|
||||
}
|
||||
double a = p_max;
|
||||
double a2 = pow(a, 2);
|
||||
|
||||
double A = sqrt(fabs(a2/pow(x,2) - 1));
|
||||
double B = atan(A);
|
||||
double C = log(a/x);
|
||||
double D = 1 - a2/pow(x,2);
|
||||
|
||||
double E = -2/(a2*D*B);
|
||||
double F = 1/(a2*A);
|
||||
double G = 1/(pow(x, 2)*pow(A, 3));
|
||||
double H = 1/a2 + 2/(a2 * A * B);
|
||||
|
||||
return x*((E + F + G) * C/B - H)/B;
|
||||
}
|
||||
|
39
ex-4/lib.h
Normal file
39
ex-4/lib.h
Normal file
@ -0,0 +1,39 @@
|
||||
#pragma once
|
||||
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
// Histogram struct.
|
||||
//
|
||||
struct bin
|
||||
{
|
||||
size_t amo; // Amount of events in the bin.
|
||||
double sum; // Sum of |p_v|s of all the events in the bin.
|
||||
};
|
||||
|
||||
// Minimization struct.
|
||||
//
|
||||
struct parameters
|
||||
{
|
||||
struct bin* histo; // Histogram
|
||||
size_t n; // Number of bins
|
||||
double step; // Bin width
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
|
||||
// Minimization wrapper.
|
||||
//
|
||||
double chi2(double p_max, void* params);
|
||||
|
||||
// Expected function.
|
||||
//
|
||||
double expected (double x, double p_max);
|
||||
|
||||
// First derivative of the expected function.
|
||||
//
|
||||
double exp1d (double x, double p_max);
|
||||
|
||||
// Second derivative of the expected function.
|
||||
//
|
||||
double exp2d (double x, double p_max);
|
139
ex-4/main.c
139
ex-4/main.c
@ -1,24 +1,21 @@
|
||||
#include "lib.h"
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <gsl/gsl_rng.h>
|
||||
#include <gsl/gsl_min.h>
|
||||
#include <gsl/gsl_deriv.h>
|
||||
|
||||
int main(int argc, char **argv)
|
||||
|
||||
// Process CLI arguments.
|
||||
//
|
||||
int parser(size_t *N, size_t *n, double *p_max, char argc, char **argv)
|
||||
{
|
||||
|
||||
// Set default options.
|
||||
//
|
||||
size_t N = 50000; // number of events.
|
||||
size_t n = 50; // number of bins.
|
||||
double p_max = 10; // maximum value of momentum module.
|
||||
|
||||
// Process CLI arguments.
|
||||
//
|
||||
for (size_t i = 1; i < argc; i++)
|
||||
{
|
||||
if (!strcmp(argv[i], "-N")) N = atol(argv[++i]);
|
||||
else if (!strcmp(argv[i], "-n")) n = atol(argv[++i]);
|
||||
else if (!strcmp(argv[i], "-p")) p_max = atof(argv[++i]);
|
||||
if (!strcmp(argv[i], "-N")) *N = atol(argv[++i]);
|
||||
else if (!strcmp(argv[i], "-n")) *n = atol(argv[++i]);
|
||||
else if (!strcmp(argv[i], "-p")) *p_max = atof(argv[++i]);
|
||||
else
|
||||
{
|
||||
fprintf(stderr, "Usage: %s -[hiIntp]\n", argv[0]);
|
||||
@ -29,6 +26,25 @@ int main(int argc, char **argv)
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
|
||||
// Set default options.
|
||||
//
|
||||
size_t N = 50000; // number of events.
|
||||
size_t n = 50; // number of bins.
|
||||
double p_max = 10; // maximum value of momentum module.
|
||||
int res = parser(&N, &n, &p_max, argc, argv);
|
||||
if (res == 0) printf("\nGenerating histogram with:\n"
|
||||
"%ld points\n"
|
||||
"%ld bins\n"
|
||||
"p_max = %.3f\n\n", N, n, p_max);
|
||||
|
||||
// printf("step: \t%.5f\n", step);
|
||||
|
||||
// Initialize an RNG.
|
||||
//
|
||||
@ -51,7 +67,7 @@ int main(int argc, char **argv)
|
||||
// p_v = p⋅cos(θ)
|
||||
// p_h = p⋅sin(θ)
|
||||
//
|
||||
// The histogram will be updated this way.
|
||||
// The histogram is updated this way.
|
||||
// The j-th bin where p_h goes in is given by:
|
||||
//
|
||||
// step = p_max / n
|
||||
@ -59,13 +75,8 @@ int main(int argc, char **argv)
|
||||
//
|
||||
// Thus an histogram was created and a structure containing the number of
|
||||
// entries in each bin and the sum of |p_v| in each of them is created and
|
||||
// filled while generating the events.
|
||||
// filled while generating the events (struct bin).
|
||||
//
|
||||
struct bin
|
||||
{
|
||||
size_t amo; // Amount of events in the bin.
|
||||
double sum; // Sum of |p_v|s of all the events in the bin.
|
||||
};
|
||||
struct bin *histo = calloc(n, sizeof(struct bin));
|
||||
|
||||
// Some useful variables.
|
||||
@ -94,22 +105,96 @@ int main(int argc, char **argv)
|
||||
//
|
||||
j = floor(p_h / step);
|
||||
b = &histo[j];
|
||||
b->amo++;
|
||||
b->sum += fabs(p_v);
|
||||
b -> amo++;
|
||||
b -> sum += fabs(p_v);
|
||||
}
|
||||
|
||||
// Compute the mean value of each bin and print it to stodut
|
||||
// together with other useful things to make the histogram.
|
||||
//
|
||||
printf("bins: \t%ld\n", n);
|
||||
printf("step: \t%.5f\n", step);
|
||||
// printf("bins: \t%ld\n", n);
|
||||
// printf("step: \t%.5f\n", step);
|
||||
for (size_t i = 0; i < n; i++)
|
||||
{
|
||||
histo[i].sum = histo[i].sum / histo[i].amo;
|
||||
printf("\n%.5f", histo[i].sum);
|
||||
histo[i].sum = histo[i].sum / histo[i].amo; // Average P_v
|
||||
//printf("\n%.5f", histo[i].sum);
|
||||
};
|
||||
|
||||
// free memory
|
||||
// Compare the histigram with the expected function:
|
||||
//
|
||||
// x * log(p_max/x)/arctan(sqrt(p_max^2/x^2 - 1))
|
||||
//
|
||||
// using the χ² test.
|
||||
//
|
||||
struct parameters params;
|
||||
params.histo = histo;
|
||||
params.n = n;
|
||||
params.step = step;
|
||||
|
||||
gsl_function func;
|
||||
func.function = &chi2;
|
||||
func.params = ¶ms;
|
||||
|
||||
double min_p = 5;
|
||||
double max_p = 15;
|
||||
|
||||
// Initialize minimization.
|
||||
//
|
||||
double x = 10;
|
||||
int max_iter = 100;
|
||||
double prec = 1e-7;
|
||||
int status;
|
||||
const gsl_min_fminimizer_type *T = gsl_min_fminimizer_brent;
|
||||
gsl_min_fminimizer *s = gsl_min_fminimizer_alloc(T);
|
||||
gsl_min_fminimizer_set(s, &func, x, min_p, max_p);
|
||||
|
||||
// Minimization.
|
||||
//
|
||||
for (int iter = 0; status == GSL_CONTINUE && iter < max_iter; iter++)
|
||||
{
|
||||
status = gsl_min_fminimizer_iterate(s);
|
||||
x = gsl_min_fminimizer_x_minimum(s);
|
||||
min_p = gsl_min_fminimizer_x_lower(s);
|
||||
max_p = gsl_min_fminimizer_x_upper(s);
|
||||
status = gsl_min_test_interval(min_p, max_p, 0, prec);
|
||||
}
|
||||
|
||||
double result = x;
|
||||
printf("p_max: %.7f\n", result);
|
||||
|
||||
// Compute the second derivative of χ² in its minimum for the result error.
|
||||
//
|
||||
// p_max = α
|
||||
//
|
||||
// (Ei - Oi)²
|
||||
// χ² = Σi ----------
|
||||
// Ei
|
||||
//
|
||||
// / Oi² \
|
||||
// ∂αχ² = Σi | 1 - --- | ∂αE
|
||||
// \ Ei² /
|
||||
//
|
||||
// / Oi² / Oi² \ \
|
||||
// ∂²αχ² = Σi | (∂αE)² 2 --- + ∂²αE | 1 - --- | |
|
||||
// \ Ei³ \ Ei² / /
|
||||
//
|
||||
double expecto, A, B;
|
||||
double error = 0;
|
||||
for (size_t i = 0; i < n; i++)
|
||||
{
|
||||
x = (i + 0.5) * step;
|
||||
expecto = expected(x, result);
|
||||
A = 2 * pow(exp1d(x, result) * histo[i].sum / expecto, 2);
|
||||
B = exp2d(x, result) * (1 - pow((histo[i].sum / expecto), 2));
|
||||
error = error + A + B;
|
||||
};
|
||||
error = 1/error;
|
||||
printf("ΔP_max: %.7f\n\n", error);
|
||||
|
||||
|
||||
// Free memory.
|
||||
//
|
||||
gsl_min_fminimizer_free(s);
|
||||
gsl_rng_free(r);
|
||||
free(histo);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user