sections: fix a lot of things

This commit is contained in:
Giù Marcer 2020-06-10 16:23:33 +02:00 committed by rnhmjoj
parent 57d6b7205c
commit da3fa68172
9 changed files with 572 additions and 438 deletions

View File

@ -1,5 +1,5 @@
---
title: Title
title: Testing for a Landau distribution
date: \today
author:
- Giulia Marcer
@ -16,9 +16,19 @@ fontsize: 12pt
mainfont: Fira Sans
mainfontoptions:
- BoldFont=Fira Sans
mathfont: FiraMath-Regular
references:
- type: article-journal
id: trapani15
author:
family: Trapani
given: Lorenzo
title: testing for (in)finite moments
container-title: Journal of Econometrix
issued:
year: 2015
header-includes: |
```{=latex}
%% Colors
@ -32,6 +42,11 @@ header-includes: |
\definecolor{yellow}{HTML}{CFB017}
\setbeamercolor{frametitle}{bg=mDarkRed}
\definecolor{cyclamen}{RGB}{146,24,43}
\usepackage{ulem}
\newcommand\strike{\bgroup\markoverwith{%
\textcolor{mDarkRed}{\rule[0.5ex]{2pt}{1pt}}}\ULon}
% center images
\LetLtxMacro{\oldIncludegraphics}{\includegraphics}
@ -40,6 +55,7 @@ header-includes: |
\oldIncludegraphics[#1]{#2}
}
% "thus" in formulas
\DeclareMathOperator{\thus}{%
\hspace{30pt} \Longrightarrow \hspace{30pt}
@ -69,5 +85,9 @@ header-includes: |
\DeclareMathOperator{\ob}{%
^{\text{obs}}
}
\setbeamercovered{transparent}
```
csl: ../notes/docs/bibliography.csl
...

View File

@ -3,24 +3,26 @@
## Goal
- Generate a sample $L$ of points from a Landau PDF
- Generate a sample $M$ of points from a Moyal PDF
Construct six statistical tests to assert whether a sample comes from a Landau
distribution
. . .
- Implement a bunch of statistical tests
- Generate a sample $L$ from a Landau PDF
- Generate a sample $M$ from a Moyal PDF
. . .
- Check if they work:
- the sample $L$ truly comes from a Landau PDF
- the sample $M$ does not come from a Landau PDF
$H_0$: sample following Landau PDF
- can we accept $H_0$ for $L$?
- can we reject $H_0$ for $M$?
## Why?
## Why Moyal?
The Landau and Moyal PDFs are really similar. Historically, the latter was
utilized in the approximation of the former.
utilized as an approximation of the former.
:::: {.columns}
::: {.column width=33%}
@ -79,15 +81,18 @@ utilized in the approximation of the former.
. . .
- Parameters comparison:
- compatibility between expected and observed PDF parameters
- **Properties test**:
compatibility between expected and observed PDF properties
. . .
- Kolmogorov - Smirnov test:
- compatibility between expected and observed CDF
- **Kolmogorov - Smirnov test**:
compatibility between expected and empirical CDF
. . .
- Trapani test:
- compatibility between expected and observed moments
- **Trapani test**:
test for finite or infinite moments

View File

@ -1,18 +1,24 @@
# Landau PDF
## A pathological distribution
## Landau PDF
Because of its fat tail:
:::: {.columns}
::: {.column width=50% .c}
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
$$
:::
\begin{align*}
E[x] &\longrightarrow + \infty \\
V[x] &\longrightarrow + \infty
\end{align*}
::: {.column width=50%}
![](images/landau-pdf.pdf)
:::
::::
. . .
No closed form for parameters $\thus$ numerical estimations
No closed form for \textcolor{cyclamen}{ANYTHING}
## Landau median
@ -28,9 +34,17 @@ $$
- CDF computed by numerical integration
- QDF computed by numerical root-finding (Brent)
$$
m_L\ex = 1.3557804...
$$
\setbeamercovered{}
\begin{center}
\begin{tikzpicture}[remember picture]
\node at (0,0) (here) {$m_L\ex = 1.3557804...$};
\pause
\node [opacity=0.5, xscale=0.35, yscale=0.25 ] at (here) {\includegraphics{images/high.png}};
\end{tikzpicture}
\end{center}
\setbeamercovered{transparent}
## Landau mode
@ -41,9 +55,17 @@ $$
- Computed by numerical minimization (Brent)
$$
\mu_L\ex = 0.22278...
$$
\setbeamercovered{}
\begin{center}
\begin{tikzpicture}[remember picture]
\node at (0,0) (here) {$\mu_L\ex = 0.22278...$};
\pause
\node [opacity=0.5, xscale=0.32, yscale=0.25 ] at (here) {\includegraphics{images/high.png}};
\end{tikzpicture}
\end{center}
\setbeamercovered{transparent}
## Landau FWHM
@ -62,6 +84,14 @@ $$
- Computed by numerical root finding (Brent)
$$
w_L\ex = 4.018645...
$$
\setbeamercovered{}
\begin{center}
\begin{tikzpicture}[remember picture]
\node at (0,0) (here) {$w_L\ex = 4.018645...$};
\pause
\node [opacity=0.5, xscale=0.32, yscale=0.25 ] at (here) {\includegraphics{images/high.png}};
\end{tikzpicture}
\end{center}
\setbeamercovered{transparent}

View File

@ -121,12 +121,8 @@ $$
## Moyal FWHM
$$
x_+ - x_- = W_0 \left( - \frac{1}{4 e} \right)
- W_{-1} \left( - \frac{1}{4 e} \right)
= 3.590806098...
= a
x_+ - x_- = 3.590806098... = a
$$
\begin{align*}
M(z)
&\thus w_M^{\text{exp}} = a \\

View File

@ -1,26 +1,31 @@
# Sample parameters estimation
# Sample statistics
## Sample parameters estimation
## Sample statistics
Once the points are sampled,
how to estimate their median, mode and FWHM?
How to estimate sample median, mode and FWHM?
. . .
- Binning data $\hence$ result depending on bin-width
- \only<3>\strike{Binning data $\hence$ depends wildly on bin-width}
. . .
- Alternative solutions
- Robust estimators
- Kernel density estimation
## Sample median
:::: {.columns}
::: {.column width=50% .c}
$$
m = Q \left( \frac{1}{2} \right)
F(m) = \frac{1}{2}
$$
\vspace{20pt}
. . .
- Sort points in ascending order
@ -28,7 +33,14 @@ $$
. . .
- Middle element if odd
- Average of the two central elements if even
Average of the two central elements if even
:::
::: {.column width=50%}
![](images/median.pdf)
:::
::::
## Sample mode
@ -37,11 +49,78 @@ Most probable value
. . .
HSM
Half Sample Mode
- Iteratively identify the smallest interval containing half points
- Once the sample is reduced to less than three points, take average
. . .
\setbeamercovered{}
\begin{center}
\begin{tikzpicture}[remember picture]
% line
\draw [line width=3, ->, cyclamen] (-5,0) -- (5,0);
\node [right] at (5,0) {$x$};
% points
\draw [blue, fill=blue] (-4.6,-0.1) rectangle (-4.8,0.1);
\draw [blue, fill=blue] (-4,-0.1) rectangle (-4.2,0.1);
\draw [blue, fill=blue] (-3.3,-0.1) rectangle (-3.5,0.1);
\draw [blue, fill=blue] (-2.3,-0.1) rectangle (-2.5,0.1);
\draw [blue, fill=blue] (-0.6,-0.1) rectangle (-0.8,0.1);
\draw [blue, fill=blue] (-0.1,-0.1) rectangle (0.1,0.1);
\draw [blue, fill=blue] (1.1,-0.1) rectangle (1.3,0.1);
\draw [blue, fill=blue] (2 ,-0.1) rectangle (2.2,0.1);
\draw [blue, fill=blue] (2.7,-0.1) rectangle (2.9,0.1);
\draw [blue, fill=blue] (4,-0.1) rectangle (4.2,0.1);
% future nodes
\node at (-1,-0.3) (1a) {};
\node at (3.1,0.3) (1b) {};
\node at (0.9,-0.3) (2a) {};
\node at (1.8,-0.3) (3a) {};
% result nodes
\node at (2.45,-0.7) (f1) {};
\node at (2.45,0.7) (f2) {};
\end{tikzpicture}
\end{center}
. . .
\begin{center}
\begin{tikzpicture}[remember picture, overlay]
% region
\draw [orange, fill=orange, opacity=0.5] (1a) rectangle (1b);
\end{tikzpicture}
\end{center}
. . .
\begin{center}
\begin{tikzpicture}[remember picture, overlay]
% region
\draw [orange, fill=orange, opacity=0.5] (2a) rectangle (1b);
\end{tikzpicture}
\end{center}
. . .
\begin{center}
\begin{tikzpicture}[remember picture, overlay]
% region
\draw [orange, fill=orange, opacity=0.5] (3a) rectangle (1b);
\end{tikzpicture}
\end{center}
. . .
\begin{center}
\begin{tikzpicture}[remember picture, overlay]
% region
\draw [cyclamen, ultra thick] (f1) -- (f2);
\end{tikzpicture}
\end{center}
## Sample FWHM
@ -49,9 +128,10 @@ $$
\text{FWHM} = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
$$
\setbeamercovered{transparent}
. . .
KDE
Kernel Density Estimation
- empirical PDF construction:
@ -82,9 +162,9 @@ with:
. . .
\vspace{10pt}
Numerical root finding (Brent)
Numerical minimization (Brent) for $\quad f_{\varepsilon_{\text{max}}}$
Numerical root finding (Brent) for $\quad f_{\varepsilon}(x_{\pm}) =
\frac{f_{\varepsilon_{\text{max}}}}{2}$
## Sample FWHM

View File

@ -1,81 +1,43 @@
# MC simulations
# Kolmogorov - Smirnov test
## In summary
## KS
-----------------------------------------------------
Landau Moyal
----------------- ----------------- -----------------
median $m_L\ex$ $m_M\ex (μ, σ)$
Quantify distance between expected and observed CDF
mode $\mu_L\ex$ $\mu_M\ex (μ)$
. . .
FWHM $w_L\ex$ $w_M\ex (σ)$
-----------------------------------------------------
KS statistic:
## Moyal parameters
A $M(x)$ similar to $L(x)$ can be found by imposing:
\vspace{15pt}
- equal mode
$$
\mu_M\ex = \mu_L\ex \approx 0.22278298...
D_N = \text{sup}_x |F_N(x) - F(x)|
$$
- $F(x)$ is the expected CDF
- $F_N(x)$ is the empirical CDF of $N$ sampled points
- sort points in ascending order
- number of points preceding the point normalized by $N$
## KS
$H_0$: points sampled according to $F(x)$
. . .
If $H_0$ is true:
- $\sqrt{N}D_N \xrightarrow{N \rightarrow + \infty} K$
Kolmogorov distribution with CDF:
$$
P(K \leqslant K_0) = 1 - p = \frac{\sqrt{2 \pi}}{K_0}
\sum_{j = 1}^{+ \infty} e^{-(2j - 1)^2 \pi^2 / 8 K_0^2}
$$
. . .
- equal width
$$
w_M\ex = w_L\ex = \sigma \cdot a
$$
a $p$-value can be computed
$$
\implies \sigma_M \approx 1.1191486...
$$
## Moyal parameters
:::: {.columns}
::: {.column width=50%}
![](images/both-pdf-bef.pdf)
:::
::: {.column width=50%}
![](images/both-pdf-aft.pdf)
:::
::::
## Moyal parameters
This leads to more different medians:
\begin{align*}
m_M = 0.787... \thus &m_M = 0.658... \\
&m_L = 1.355...
\end{align*}
## Compatibility test
Comparing results:
$$
p = 1 - \text{erf} \left( \frac{t}{\sqrt{2}} \right)\ \with
t = \frac{|x\ex - x\ob|}{\sqrt{\sigma\ex^2 + \sigma\ob^2}}
$$
- $x\ex$ and $x\ob$ are the expected and observed values
- $\sigma\ex$ and $\sigma\ob$ are their absolute errors
. . .
At 95% confidence level, the values are compatible if:
$$
p > 0.05
$$
- At 95% confidence level, $H_0$ cannot be disproved if $p > 0.05$

View File

@ -1,148 +1,181 @@
# Landau sample
# Trapani test
## Sample
## A pathological distribution
Sample N = 50'000 random points following $L(x)$
Because of its fat tail:
\begin{align*}
\mu_1 &= \text{E}\left[|x|\right] \longrightarrow + \infty \\
\mu_2 &= \text{E}\left[|x|^2\right] \longrightarrow + \infty
\end{align*}
. . .
No closed form for parameters $\thus$ numerical estimations
. . .
For a Moyal PDF:
\begin{align*}
E_M[x] &= \mu + \sigma [ \gamma + \ln(2) ] \\
V_M[x] &= \frac{\pi^2 \sigma^2}{2}
\end{align*}
## Infinite moments
- Check whether a moment is finite or infinite
\begin{align*}
\text{infinite} &\thus Landau \\
\text{finite} &\thus Moyal
\end{align*}
. . .
# Trapani test
## Trapani test
::: incremental
- Random variable $\left\{ x_i \right\}$ sampled from a distribution $f$
- Sample moments according to $f$ moments
- $H_0$: $\mu_k \longrightarrow + \infty$
- Statistic with 1 dof chi-squared distribution
:::
## Trapani test
- Start with $\left\{ x_i \right\}^N$ and compute $\mu_k$ as:
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
\mu_k = \frac{1}{N} \sum_{i = 1}^N |x_i|^k
$$
. . .
gsl_ran_Landau(gsl_rng)
## Compatibility results:
Median:
:::: {.columns}
::: {.column width=50%}
- $t = 0.761$
- $p = 0.446$
:::
::: {.column width=50%}
- Generate $r$ points $\left\{ \xi_j\right\}^r$ according to $G(0, 1)$ and define
$\left\{ a_j \right\}^r$ as:
$$
\hence \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
Mode:
:::: {.columns}
::: {.column width=50%}
- $t = 1.012$
- $p = 0.311$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
FWHM:
:::: {.columns}
::: {.column width=50%}
- $t=1.338$
- $p=0.181$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
# Moyal sample
## Sample
Sample N = 50'000 random points following $M_{\mu \sigma}(x)$
$$
M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
\left[ - \frac{1}{2} \left(
\frac{x - \mu}{\sigma}
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
a_j = \sqrt{e^{\mu_k}} \cdot \xi_j
\thus G'\left( 0, \sqrt{e^{\mu_k}} \right)
$$
. . .
reverse sampling
The greater $\mu^k$, the 'larger' $G'$
- sampling $y$ uniformly in [0, 1] $\hence x = Q_M(y)$
- if $\mu_k \longrightarrow + \infty \thus a_j$ distributed uniformly
## Compatibility results:
## Trapani test
Median:
:::: {.columns}
::: {.column width=50%}
- $t = 669.940$
- $p = 0.000$
:::
::: {.column width=50%}
- Define the sequence: $\left\{ \zeta_j (u) \right\}^r$ as:
$$
\hence \text{Not compatible!}
\zeta_j (u) = \theta( u - a_j) \with \theta - \text{Heaviside}
$$
:::
::::
\vspace{10pt}
. . .
Mode:
:::: {.columns}
::: {.column width=50%}
- $t = 0.732$
- $p = 0.464$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
\vspace{10pt}
\begin{center}
\begin{tikzpicture}
% line
\draw [line width=3, ->, cyclamen] (0,0) -- (10,0);
\node [right] at (10,0) {$u$};
% tic
\draw [thick] (5,-0.3) -- (5,0.3);
\node [above] at (5,0.3) {$u_0$};
% aj tics
\draw [thick, cyclamen] (1,-0.2) -- (1,0.2);
\node [below right, cyclamen] at (1,-0.2) {$a_{j+2}$};
\draw [thick, cyclamen] (2,-0.2) -- (2,0.2);
\node [below right, cyclamen] at (2,-0.2) {$a_j$};
\draw [thick, cyclamen] (5.2,-0.2) -- (5.2,0.2);
\node [below right, cyclamen] at (5.2,-0.2) {$a_{j+2}$};
\draw [thick, cyclamen] (6,-0.2) -- (6,0.2);
\node [below right, cyclamen] at (6,-0.2) {$a_{j+3}$};
\draw [thick, cyclamen] (8.5,-0.2) -- (8.5,0.2);
\node [below right, cyclamen] at (8.5,-0.2) {$a_{j+4}$};
% notes
\node [below] at (1,-1) {0};
\node [below] at (2,-1) {0};
\node [below] at (5.2,-1) {1};
\node [below] at (6,-1) {1};
\node [below] at (8.5,-1) {1};
\draw [thick, ->] (1,-0.5) -- (1,-1);
\draw [thick, ->] (2,-0.5) -- (2,-1);
\draw [thick, ->] (5.2,-0.5) -- (5.2,-1);
\draw [thick, ->] (6,-0.5) -- (6,-1);
\draw [thick, ->] (8.5,-0.5) -- (8.5,-1);
\end{tikzpicture}
\end{center}
. . .
FWHM:
If $a_j$ uniformly distributed and $N \rightarrow + \infty$:
:::: {.columns}
::: {.column width=50%}
- $t = 1.329$
- $p = 0.184$
:::
- $\zeta_j (u)$ Bernoulli PDF with $P(\zeta_j (u) = 1) = \frac{1}{2}$
::: {.column width=50%}
## Trapani test
- Define the function $\vartheta (u)$ as:
$$
\hence \text{Compatible!}
\vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
$$
:::
::::
. . .
If $a_j$ uniformly distributed and $N \rightarrow + \infty$, for the CLT:
$$
\sum_j \zeta_j (u) \hence
G \left( \frac{r}{2}, \frac{r}{4} \right)
\thus \vartheta (u) \hence
G \left( 0, 1 \right)
$$
. . .
- Test statistic:
$$
\Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u)
$$
## Trapani test
According to L. Trapani [@trapani15]:
- $r = o(N) \hence r = N^{0.75}$
- $\underbar{u} = 1 \quad \wedge \quad \bar{u} = 1$
- $\psi(u) = \chi_{[\underbar{u}, \bar{u}]}$
. . .
$\mu_k$ must be scale invariant for $k > 1$:
$$
\tilde{\mu_k} = \frac{\mu_k}{ \left( \mu_{\phi} \right)^{k/\phi} }
\with \phi \in (0, k)
$$
## Trapani test
If $\mu_k \ne + \infty \hence \left\{ a_j \right\}$ are not uniformly distributed
\vspace{20pt}
Rewriting:
$$
\vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
= \frac{2}{\sqrt{r}}
\sum_{j} \left[ \zeta_j (u) - \frac{1}{2} \right]
$$
\vspace{20pt}
Residues become very large $\hence$ $p$-values decreases.

View File

@ -1,87 +1,81 @@
# Kolmogorov - Smirnov test
# MC simulations
## KS
## In summary
Quantify distance between expected and observed CDF
-----------------------------------------------------
Landau Moyal
----------------- ----------------- -----------------
median $m_L\ex$ $m_M\ex (μ, σ)$
. . .
mode $\mu_L\ex$ $\mu_M\ex (μ)$
KS statistic:
FWHM $w_L\ex$ $w_M\ex (σ)$
-----------------------------------------------------
## Moyal parameters
A $M(x)$ similar to $L(x)$ can be found by imposing:
\vspace{15pt}
- equal mode
$$
D_N = \text{sup}_x |F_N(x) - F(x)|
$$
- $F(x)$ is the expected CDF
- $F_N(x)$ is the empirical CDF of $N$ sampled points
- sort points in ascending order
- number of points preceding the point normalized by $N$
## KS
$H_0$: points sampled according to $F(x)$
. . .
If $H_0$ is true:
- $\sqrt{N}D_N \xrightarrow{N \rightarrow + \infty} K$
Kolmogorov distribution with CDF:
$$
P(K \leqslant K_0) = 1 - p = \frac{\sqrt{2 \pi}}{K_0}
\sum_{j = 1}^{+ \infty} e^{-(2j - 1)^2 \pi^2 / 8 K_0^2}
\mu_M\ex = \mu_L\ex \approx 0.22278298...
$$
. . .
a $p$-value can be computed
- equal width
$$
w_M\ex = w_L\ex = \sigma \cdot a
$$
- At 95% confidence level, $H_0$ cannot be disproved if $p > 0.05$
$$
\implies \sigma_M \approx 1.1191486...
$$
# Samples results
## Samples results
$N = 50000$ sampled points
. . .
Landau sample:
## Moyal parameters
:::: {.columns}
::: {.column width=50%}
- $D = 0.004$
- $p = 0.379$
![](images/both-pdf-bef.pdf)
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
![](images/both-pdf-aft.pdf)
:::
::::
\vspace{10pt}
## Moyal parameters
This leads to more different medians:
\begin{align*}
m_M = 0.787... \thus &m_M = 0.658... \\
&m_L = 1.355...
\end{align*}
## Compatibility test
Comparing results:
$$
p = 1 - \text{erf} \left( \frac{t}{\sqrt{2}} \right)\ \with
t = \frac{|x\ex - x\ob|}{\sqrt{\sigma\ex^2 + \sigma\ob^2}}
$$
- $x\ex$ and $x\ob$ are the expected and observed values
- $\sigma\ex$ and $\sigma\ob$ are their absolute errors
. . .
Moyal sample:
At 95% confidence level, the values are compatible if:
:::: {.columns}
::: {.column width=50%}
- $D = 0.153$
- $p = 0.000$
:::
::: {.column width=50%}
$$
\hence \text{Not compatible!}
p > 0.05
$$
:::
::::

View File

@ -1,184 +1,198 @@
# Trapani test
# Landau sample
## Infinite moments
## Sample
For a Landau PDF:
\begin{align*}
E_L[x] &\longrightarrow + \infty \\
V_L[x] \text{undefined}
\end{align*}
Sample N = 50'000 random points following $L(x)$
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
$$
. . .
For a Moyal PDF:
\begin{align*}
E_M[x] &= \mu + \sigma [ \gamma + \ln(2) ] \\
V_M[x] &= \frac{\pi^2 \sigma^2}{2}
\end{align*}
gsl_ran_Landau(gsl_rng)
## Infinite moments
## Compatibility results:
- Check whether a moment is finite or infinite
\begin{align*}
\text{infinite} &\thus Landau \\
\text{finite} &\thus Moyal
\end{align*}
. . .
# Trapani test
## Trapani test
::: incremental
- Random variable $\left\{ x_i \right\}$ sampled from a distribution $f$
- Sample moments according to $f$ moments
- $H_0$: $\mu_k \longrightarrow + \infty$
- Statistic with 1 dof chi-squared distribution
Median:
:::: {.columns}
::: {.column width=50%}
- $t = 0.761$
- $p = 0.446$
:::
## Trapani test
- Start with $\left\{ x_i \right\}^N$ and compute $\mu_k$ as:
::: {.column width=50%}
$$
\mu_k = \frac{1}{N} \sum_{i = 1}^N |x_i|^k
\hence \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
Mode:
:::: {.columns}
::: {.column width=50%}
- $t = 1.012$
- $p = 0.311$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
FWHM:
:::: {.columns}
::: {.column width=50%}
- $t=1.338$
- $p=0.181$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
# Moyal sample
## Sample
Sample N = 50'000 random points following $M_{\mu \sigma}(x)$
$$
M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
\left[ - \frac{1}{2} \left(
\frac{x - \mu}{\sigma}
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
$$
. . .
- Generate $r$ points $\left\{ \xi_j\right\}^r$ according to $G(0, 1)$ and define
$\left\{ a_j \right\}^r$ as:
reverse sampling
- sampling $y$ uniformly in [0, 1] $\hence x = Q_M(y)$
## Compatibility results:
Median:
:::: {.columns}
::: {.column width=50%}
- $t = 669.940$
- $p = 0.000$
:::
::: {.column width=50%}
$$
a_j = \sqrt{e^{\mu_k}} \cdot \xi_j
\thus G'\left( 0, \sqrt{e^{\mu_k}} \right)
\hence \text{Not compatible!}
$$
:::
::::
\vspace{10pt}
. . .
The greater $\mu^k$, the 'larger' $G'$
Mode:
- if $\mu_k \longrightarrow + \infty \thus a_j$ distributed uniformly
:::: {.columns}
::: {.column width=50%}
- $t = 0.732$
- $p = 0.464$
:::
## Trapani test
- Define the sequence: $\left\{ \zeta_j (u) \right\}^r$ as:
::: {.column width=50%}
$$
\zeta_j (u) = \theta( u - a_j) \with \theta - \text{Heaviside}
\hence \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
\begin{center}
\begin{tikzpicture}
\definecolor{cyclamen}{RGB}{146,24,43}
% line
\draw [line width=3, ->, cyclamen] (0,0) -- (10,0);
\node [right] at (10,0) {$u$};
% tic
\draw [thick] (5,-0.3) -- (5,0.3);
\node [above] at (5,0.3) {$u_0$};
% aj tics
\draw [thick, cyclamen] (1,-0.2) -- (1,0.2);
\node [below right, cyclamen] at (1,-0.2) {$a_{j+2}$};
\draw [thick, cyclamen] (2,-0.2) -- (2,0.2);
\node [below right, cyclamen] at (2,-0.2) {$a_j$};
\draw [thick, cyclamen] (5.2,-0.2) -- (5.2,0.2);
\node [below right, cyclamen] at (5.2,-0.2) {$a_{j+2}$};
\draw [thick, cyclamen] (6,-0.2) -- (6,0.2);
\node [below right, cyclamen] at (6,-0.2) {$a_{j+3}$};
\draw [thick, cyclamen] (8.5,-0.2) -- (8.5,0.2);
\node [below right, cyclamen] at (8.5,-0.2) {$a_{j+4}$};
% notes
\node [below] at (1,-1) {0};
\node [below] at (2,-1) {0};
\node [below] at (5.2,-1) {1};
\node [below] at (6,-1) {1};
\node [below] at (8.5,-1) {1};
\draw [thick, ->] (1,-0.5) -- (1,-1);
\draw [thick, ->] (2,-0.5) -- (2,-1);
\draw [thick, ->] (5.2,-0.5) -- (5.2,-1);
\draw [thick, ->] (6,-0.5) -- (6,-1);
\draw [thick, ->] (8.5,-0.5) -- (8.5,-1);
\end{tikzpicture}
\end{center}
FWHM:
:::: {.columns}
::: {.column width=50%}
- $t = 1.329$
- $p = 0.184$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
# KS results
## Samples results
$N = 50000$ sampled points
. . .
If $a_j$ uniformly distributed and $N \rightarrow + \infty$:
Landau sample:
- $\zeta_j (u)$ Bernoulli PDF with $P(\zeta_j (u) = 1) = \frac{1}{2}$
:::: {.columns}
::: {.column width=50%}
- $D = 0.004$
- $p = 0.379$
:::
## Trapani test
- Define the function $\vartheta (u)$ as:
::: {.column width=50%}
$$
\vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
\hence \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
If $a_j$ uniformly distributed and $N \rightarrow + \infty$, for the CLT:
Moyal sample:
:::: {.columns}
::: {.column width=50%}
- $D = 0.153$
- $p = 0.000$
:::
::: {.column width=50%}
$$
\sum_j \zeta_j (u) \hence
G \left( \frac{r}{2}, \frac{r}{4} \right)
\thus \vartheta (u) \hence
G \left( 0, 1 \right)
$$
. . .
- Test statistic:
$$
\Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u)
\hence \text{Not compatible!}
$$
:::
::::
## Trapani test
According to L. Trapani (10.1016/j.jeconom.2015.08.006):
- $r = o(N) \hence r = N^{0.75}$
- $\underbar{u} = 1 \quad \wedge \quad \bar{u} = 1$
- $\psi(u) = \chi_{[\underbar{u}, \bar{u}]}$
. . .
$\mu_k$ must be scale invariant for $k > 1$:
$$
\tilde{\mu_k} = \frac{\mu_k}{ \left( \mu_{\phi} \right)^{k/\phi} }
\with \phi \in (0, k)
$$
## Trapani test
If $\mu_k \ne + \infty \hence \left\{ a_j \right\}$ are not uniformly distributed
\vspace{20pt}
Rewriting:
$$
\vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
= \frac{2}{\sqrt{r}}
\sum_{j} \left[ \zeta_j (u) - \frac{1}{2} \right]
$$
\vspace{20pt}
Residues become very large $\hence$ $p$-values decreases.
# Samples results
# Trapani results
## Samples results