sections: fix a lot of things

This commit is contained in:
Giù Marcer 2020-06-10 16:23:33 +02:00 committed by rnhmjoj
parent 57d6b7205c
commit da3fa68172
9 changed files with 572 additions and 438 deletions

View File

@ -1,5 +1,5 @@
--- ---
title: Title title: Testing for a Landau distribution
date: \today date: \today
author: author:
- Giulia Marcer - Giulia Marcer
@ -16,9 +16,19 @@ fontsize: 12pt
mainfont: Fira Sans mainfont: Fira Sans
mainfontoptions: mainfontoptions:
- BoldFont=Fira Sans - BoldFont=Fira Sans
mathfont: FiraMath-Regular mathfont: FiraMath-Regular
references:
- type: article-journal
id: trapani15
author:
family: Trapani
given: Lorenzo
title: testing for (in)finite moments
container-title: Journal of Econometrix
issued:
year: 2015
header-includes: | header-includes: |
```{=latex} ```{=latex}
%% Colors %% Colors
@ -32,6 +42,11 @@ header-includes: |
\definecolor{yellow}{HTML}{CFB017} \definecolor{yellow}{HTML}{CFB017}
\setbeamercolor{frametitle}{bg=mDarkRed} \setbeamercolor{frametitle}{bg=mDarkRed}
\definecolor{cyclamen}{RGB}{146,24,43}
\usepackage{ulem}
\newcommand\strike{\bgroup\markoverwith{%
\textcolor{mDarkRed}{\rule[0.5ex]{2pt}{1pt}}}\ULon}
% center images % center images
\LetLtxMacro{\oldIncludegraphics}{\includegraphics} \LetLtxMacro{\oldIncludegraphics}{\includegraphics}
@ -40,6 +55,7 @@ header-includes: |
\oldIncludegraphics[#1]{#2} \oldIncludegraphics[#1]{#2}
} }
% "thus" in formulas % "thus" in formulas
\DeclareMathOperator{\thus}{% \DeclareMathOperator{\thus}{%
\hspace{30pt} \Longrightarrow \hspace{30pt} \hspace{30pt} \Longrightarrow \hspace{30pt}
@ -69,5 +85,9 @@ header-includes: |
\DeclareMathOperator{\ob}{% \DeclareMathOperator{\ob}{%
^{\text{obs}} ^{\text{obs}}
} }
\setbeamercovered{transparent}
``` ```
csl: ../notes/docs/bibliography.csl
... ...

View File

@ -3,24 +3,26 @@
## Goal ## Goal
- Generate a sample $L$ of points from a Landau PDF Construct six statistical tests to assert whether a sample comes from a Landau
- Generate a sample $M$ of points from a Moyal PDF distribution
. . . . . .
- Implement a bunch of statistical tests - Generate a sample $L$ from a Landau PDF
- Generate a sample $M$ from a Moyal PDF
. . . . . .
- Check if they work: $H_0$: sample following Landau PDF
- the sample $L$ truly comes from a Landau PDF
- the sample $M$ does not come from a Landau PDF - can we accept $H_0$ for $L$?
- can we reject $H_0$ for $M$?
## Why? ## Why Moyal?
The Landau and Moyal PDFs are really similar. Historically, the latter was The Landau and Moyal PDFs are really similar. Historically, the latter was
utilized in the approximation of the former. utilized as an approximation of the former.
:::: {.columns} :::: {.columns}
::: {.column width=33%} ::: {.column width=33%}
@ -79,15 +81,18 @@ utilized in the approximation of the former.
. . . . . .
- Parameters comparison: - **Properties test**:
- compatibility between expected and observed PDF parameters
compatibility between expected and observed PDF properties
. . . . . .
- Kolmogorov - Smirnov test: - **Kolmogorov - Smirnov test**:
- compatibility between expected and observed CDF
compatibility between expected and empirical CDF
. . . . . .
- Trapani test: - **Trapani test**:
- compatibility between expected and observed moments
test for finite or infinite moments

View File

@ -1,18 +1,24 @@
# Landau PDF # Landau PDF
## A pathological distribution ## Landau PDF
Because of its fat tail: :::: {.columns}
::: {.column width=50% .c}
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
$$
:::
\begin{align*} ::: {.column width=50%}
E[x] &\longrightarrow + \infty \\ ![](images/landau-pdf.pdf)
V[x] &\longrightarrow + \infty :::
\end{align*} ::::
. . . . . .
No closed form for parameters $\thus$ numerical estimations No closed form for \textcolor{cyclamen}{ANYTHING}
## Landau median ## Landau median
@ -28,9 +34,17 @@ $$
- CDF computed by numerical integration - CDF computed by numerical integration
- QDF computed by numerical root-finding (Brent) - QDF computed by numerical root-finding (Brent)
$$ \setbeamercovered{}
m_L\ex = 1.3557804...
$$ \begin{center}
\begin{tikzpicture}[remember picture]
\node at (0,0) (here) {$m_L\ex = 1.3557804...$};
\pause
\node [opacity=0.5, xscale=0.35, yscale=0.25 ] at (here) {\includegraphics{images/high.png}};
\end{tikzpicture}
\end{center}
\setbeamercovered{transparent}
## Landau mode ## Landau mode
@ -41,9 +55,17 @@ $$
- Computed by numerical minimization (Brent) - Computed by numerical minimization (Brent)
$$ \setbeamercovered{}
\mu_L\ex = 0.22278...
$$ \begin{center}
\begin{tikzpicture}[remember picture]
\node at (0,0) (here) {$\mu_L\ex = 0.22278...$};
\pause
\node [opacity=0.5, xscale=0.32, yscale=0.25 ] at (here) {\includegraphics{images/high.png}};
\end{tikzpicture}
\end{center}
\setbeamercovered{transparent}
## Landau FWHM ## Landau FWHM
@ -62,6 +84,14 @@ $$
- Computed by numerical root finding (Brent) - Computed by numerical root finding (Brent)
$$ \setbeamercovered{}
w_L\ex = 4.018645...
$$ \begin{center}
\begin{tikzpicture}[remember picture]
\node at (0,0) (here) {$w_L\ex = 4.018645...$};
\pause
\node [opacity=0.5, xscale=0.32, yscale=0.25 ] at (here) {\includegraphics{images/high.png}};
\end{tikzpicture}
\end{center}
\setbeamercovered{transparent}

View File

@ -121,12 +121,8 @@ $$
## Moyal FWHM ## Moyal FWHM
$$ $$
x_+ - x_- = W_0 \left( - \frac{1}{4 e} \right) x_+ - x_- = 3.590806098... = a
- W_{-1} \left( - \frac{1}{4 e} \right)
= 3.590806098...
= a
$$ $$
\begin{align*} \begin{align*}
M(z) M(z)
&\thus w_M^{\text{exp}} = a \\ &\thus w_M^{\text{exp}} = a \\

View File

@ -1,26 +1,31 @@
# Sample parameters estimation # Sample statistics
## Sample parameters estimation ## Sample statistics
Once the points are sampled, How to estimate sample median, mode and FWHM?
how to estimate their median, mode and FWHM?
. . . . . .
- Binning data $\hence$ result depending on bin-width - \only<3>\strike{Binning data $\hence$ depends wildly on bin-width}
. . . . . .
- Alternative solutions - Alternative solutions
- Robust estimators
- Kernel density estimation
## Sample median ## Sample median
:::: {.columns}
::: {.column width=50% .c}
$$ $$
m = Q \left( \frac{1}{2} \right) F(m) = \frac{1}{2}
$$ $$
\vspace{20pt}
. . . . . .
- Sort points in ascending order - Sort points in ascending order
@ -28,7 +33,14 @@ $$
. . . . . .
- Middle element if odd - Middle element if odd
- Average of the two central elements if even
Average of the two central elements if even
:::
::: {.column width=50%}
![](images/median.pdf)
:::
::::
## Sample mode ## Sample mode
@ -37,11 +49,78 @@ Most probable value
. . . . . .
HSM Half Sample Mode
- Iteratively identify the smallest interval containing half points - Iteratively identify the smallest interval containing half points
- Once the sample is reduced to less than three points, take average - Once the sample is reduced to less than three points, take average
. . .
\setbeamercovered{}
\begin{center}
\begin{tikzpicture}[remember picture]
% line
\draw [line width=3, ->, cyclamen] (-5,0) -- (5,0);
\node [right] at (5,0) {$x$};
% points
\draw [blue, fill=blue] (-4.6,-0.1) rectangle (-4.8,0.1);
\draw [blue, fill=blue] (-4,-0.1) rectangle (-4.2,0.1);
\draw [blue, fill=blue] (-3.3,-0.1) rectangle (-3.5,0.1);
\draw [blue, fill=blue] (-2.3,-0.1) rectangle (-2.5,0.1);
\draw [blue, fill=blue] (-0.6,-0.1) rectangle (-0.8,0.1);
\draw [blue, fill=blue] (-0.1,-0.1) rectangle (0.1,0.1);
\draw [blue, fill=blue] (1.1,-0.1) rectangle (1.3,0.1);
\draw [blue, fill=blue] (2 ,-0.1) rectangle (2.2,0.1);
\draw [blue, fill=blue] (2.7,-0.1) rectangle (2.9,0.1);
\draw [blue, fill=blue] (4,-0.1) rectangle (4.2,0.1);
% future nodes
\node at (-1,-0.3) (1a) {};
\node at (3.1,0.3) (1b) {};
\node at (0.9,-0.3) (2a) {};
\node at (1.8,-0.3) (3a) {};
% result nodes
\node at (2.45,-0.7) (f1) {};
\node at (2.45,0.7) (f2) {};
\end{tikzpicture}
\end{center}
. . .
\begin{center}
\begin{tikzpicture}[remember picture, overlay]
% region
\draw [orange, fill=orange, opacity=0.5] (1a) rectangle (1b);
\end{tikzpicture}
\end{center}
. . .
\begin{center}
\begin{tikzpicture}[remember picture, overlay]
% region
\draw [orange, fill=orange, opacity=0.5] (2a) rectangle (1b);
\end{tikzpicture}
\end{center}
. . .
\begin{center}
\begin{tikzpicture}[remember picture, overlay]
% region
\draw [orange, fill=orange, opacity=0.5] (3a) rectangle (1b);
\end{tikzpicture}
\end{center}
. . .
\begin{center}
\begin{tikzpicture}[remember picture, overlay]
% region
\draw [cyclamen, ultra thick] (f1) -- (f2);
\end{tikzpicture}
\end{center}
## Sample FWHM ## Sample FWHM
@ -49,9 +128,10 @@ $$
\text{FWHM} = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2} \text{FWHM} = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
$$ $$
\setbeamercovered{transparent}
. . . . . .
KDE Kernel Density Estimation
- empirical PDF construction: - empirical PDF construction:
@ -82,9 +162,9 @@ with:
. . . . . .
\vspace{10pt} Numerical minimization (Brent) for $\quad f_{\varepsilon_{\text{max}}}$
Numerical root finding (Brent) for $\quad f_{\varepsilon}(x_{\pm}) =
Numerical root finding (Brent) \frac{f_{\varepsilon_{\text{max}}}}{2}$
## Sample FWHM ## Sample FWHM

View File

@ -1,81 +1,43 @@
# MC simulations # Kolmogorov - Smirnov test
## In summary ## KS
----------------------------------------------------- Quantify distance between expected and observed CDF
Landau Moyal
----------------- ----------------- -----------------
median $m_L\ex$ $m_M\ex (μ, σ)$
mode $\mu_L\ex$ $\mu_M\ex (μ)$ . . .
FWHM $w_L\ex$ $w_M\ex (σ)$ KS statistic:
-----------------------------------------------------
## Moyal parameters
A $M(x)$ similar to $L(x)$ can be found by imposing:
\vspace{15pt}
- equal mode
$$ $$
\mu_M\ex = \mu_L\ex \approx 0.22278298... D_N = \text{sup}_x |F_N(x) - F(x)|
$$
- $F(x)$ is the expected CDF
- $F_N(x)$ is the empirical CDF of $N$ sampled points
- sort points in ascending order
- number of points preceding the point normalized by $N$
## KS
$H_0$: points sampled according to $F(x)$
. . .
If $H_0$ is true:
- $\sqrt{N}D_N \xrightarrow{N \rightarrow + \infty} K$
Kolmogorov distribution with CDF:
$$
P(K \leqslant K_0) = 1 - p = \frac{\sqrt{2 \pi}}{K_0}
\sum_{j = 1}^{+ \infty} e^{-(2j - 1)^2 \pi^2 / 8 K_0^2}
$$ $$
. . . . . .
- equal width a $p$-value can be computed
$$
w_M\ex = w_L\ex = \sigma \cdot a
$$
$$ - At 95% confidence level, $H_0$ cannot be disproved if $p > 0.05$
\implies \sigma_M \approx 1.1191486...
$$
## Moyal parameters
:::: {.columns}
::: {.column width=50%}
![](images/both-pdf-bef.pdf)
:::
::: {.column width=50%}
![](images/both-pdf-aft.pdf)
:::
::::
## Moyal parameters
This leads to more different medians:
\begin{align*}
m_M = 0.787... \thus &m_M = 0.658... \\
&m_L = 1.355...
\end{align*}
## Compatibility test
Comparing results:
$$
p = 1 - \text{erf} \left( \frac{t}{\sqrt{2}} \right)\ \with
t = \frac{|x\ex - x\ob|}{\sqrt{\sigma\ex^2 + \sigma\ob^2}}
$$
- $x\ex$ and $x\ob$ are the expected and observed values
- $\sigma\ex$ and $\sigma\ob$ are their absolute errors
. . .
At 95% confidence level, the values are compatible if:
$$
p > 0.05
$$

View File

@ -1,148 +1,181 @@
# Landau sample # Trapani test
## Sample ## A pathological distribution
Sample N = 50'000 random points following $L(x)$ Because of its fat tail:
\begin{align*}
\mu_1 &= \text{E}\left[|x|\right] \longrightarrow + \infty \\
\mu_2 &= \text{E}\left[|x|^2\right] \longrightarrow + \infty
\end{align*}
. . .
No closed form for parameters $\thus$ numerical estimations
. . .
For a Moyal PDF:
\begin{align*}
E_M[x] &= \mu + \sigma [ \gamma + \ln(2) ] \\
V_M[x] &= \frac{\pi^2 \sigma^2}{2}
\end{align*}
## Infinite moments
- Check whether a moment is finite or infinite
\begin{align*}
\text{infinite} &\thus Landau \\
\text{finite} &\thus Moyal
\end{align*}
. . .
# Trapani test
## Trapani test
::: incremental
- Random variable $\left\{ x_i \right\}$ sampled from a distribution $f$
- Sample moments according to $f$ moments
- $H_0$: $\mu_k \longrightarrow + \infty$
- Statistic with 1 dof chi-squared distribution
:::
## Trapani test
- Start with $\left\{ x_i \right\}^N$ and compute $\mu_k$ as:
$$ $$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty} \mu_k = \frac{1}{N} \sum_{i = 1}^N |x_i|^k
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
$$ $$
. . . . . .
gsl_ran_Landau(gsl_rng) - Generate $r$ points $\left\{ \xi_j\right\}^r$ according to $G(0, 1)$ and define
$\left\{ a_j \right\}^r$ as:
## Compatibility results:
Median:
:::: {.columns}
::: {.column width=50%}
- $t = 0.761$
- $p = 0.446$
:::
::: {.column width=50%}
$$ $$
\hence \text{Compatible!} a_j = \sqrt{e^{\mu_k}} \cdot \xi_j
$$ \thus G'\left( 0, \sqrt{e^{\mu_k}} \right)
:::
::::
\vspace{10pt}
. . .
Mode:
:::: {.columns}
::: {.column width=50%}
- $t = 1.012$
- $p = 0.311$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
FWHM:
:::: {.columns}
::: {.column width=50%}
- $t=1.338$
- $p=0.181$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
# Moyal sample
## Sample
Sample N = 50'000 random points following $M_{\mu \sigma}(x)$
$$
M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
\left[ - \frac{1}{2} \left(
\frac{x - \mu}{\sigma}
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
$$ $$
. . . . . .
reverse sampling The greater $\mu^k$, the 'larger' $G'$
- sampling $y$ uniformly in [0, 1] $\hence x = Q_M(y)$ - if $\mu_k \longrightarrow + \infty \thus a_j$ distributed uniformly
## Compatibility results: ## Trapani test
Median: - Define the sequence: $\left\{ \zeta_j (u) \right\}^r$ as:
:::: {.columns}
::: {.column width=50%}
- $t = 669.940$
- $p = 0.000$
:::
::: {.column width=50%}
$$ $$
\hence \text{Not compatible!} \zeta_j (u) = \theta( u - a_j) \with \theta - \text{Heaviside}
$$ $$
:::
::::
\vspace{10pt}
. . . . . .
Mode: \begin{center}
\begin{tikzpicture}
:::: {.columns} % line
::: {.column width=50%} \draw [line width=3, ->, cyclamen] (0,0) -- (10,0);
- $t = 0.732$ \node [right] at (10,0) {$u$};
- $p = 0.464$ % tic
::: \draw [thick] (5,-0.3) -- (5,0.3);
\node [above] at (5,0.3) {$u_0$};
::: {.column width=50%} % aj tics
$$ \draw [thick, cyclamen] (1,-0.2) -- (1,0.2);
\hence \text{Compatible!} \node [below right, cyclamen] at (1,-0.2) {$a_{j+2}$};
$$ \draw [thick, cyclamen] (2,-0.2) -- (2,0.2);
::: \node [below right, cyclamen] at (2,-0.2) {$a_j$};
:::: \draw [thick, cyclamen] (5.2,-0.2) -- (5.2,0.2);
\node [below right, cyclamen] at (5.2,-0.2) {$a_{j+2}$};
\vspace{10pt} \draw [thick, cyclamen] (6,-0.2) -- (6,0.2);
\node [below right, cyclamen] at (6,-0.2) {$a_{j+3}$};
\draw [thick, cyclamen] (8.5,-0.2) -- (8.5,0.2);
\node [below right, cyclamen] at (8.5,-0.2) {$a_{j+4}$};
% notes
\node [below] at (1,-1) {0};
\node [below] at (2,-1) {0};
\node [below] at (5.2,-1) {1};
\node [below] at (6,-1) {1};
\node [below] at (8.5,-1) {1};
\draw [thick, ->] (1,-0.5) -- (1,-1);
\draw [thick, ->] (2,-0.5) -- (2,-1);
\draw [thick, ->] (5.2,-0.5) -- (5.2,-1);
\draw [thick, ->] (6,-0.5) -- (6,-1);
\draw [thick, ->] (8.5,-0.5) -- (8.5,-1);
\end{tikzpicture}
\end{center}
. . . . . .
FWHM: If $a_j$ uniformly distributed and $N \rightarrow + \infty$:
:::: {.columns} - $\zeta_j (u)$ Bernoulli PDF with $P(\zeta_j (u) = 1) = \frac{1}{2}$
::: {.column width=50%}
- $t = 1.329$
- $p = 0.184$
:::
::: {.column width=50%}
## Trapani test
- Define the function $\vartheta (u)$ as:
$$ $$
\hence \text{Compatible!} \vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
$$ $$
:::
:::: . . .
If $a_j$ uniformly distributed and $N \rightarrow + \infty$, for the CLT:
$$
\sum_j \zeta_j (u) \hence
G \left( \frac{r}{2}, \frac{r}{4} \right)
\thus \vartheta (u) \hence
G \left( 0, 1 \right)
$$
. . .
- Test statistic:
$$
\Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u)
$$
## Trapani test
According to L. Trapani [@trapani15]:
- $r = o(N) \hence r = N^{0.75}$
- $\underbar{u} = 1 \quad \wedge \quad \bar{u} = 1$
- $\psi(u) = \chi_{[\underbar{u}, \bar{u}]}$
. . .
$\mu_k$ must be scale invariant for $k > 1$:
$$
\tilde{\mu_k} = \frac{\mu_k}{ \left( \mu_{\phi} \right)^{k/\phi} }
\with \phi \in (0, k)
$$
## Trapani test
If $\mu_k \ne + \infty \hence \left\{ a_j \right\}$ are not uniformly distributed
\vspace{20pt}
Rewriting:
$$
\vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
= \frac{2}{\sqrt{r}}
\sum_{j} \left[ \zeta_j (u) - \frac{1}{2} \right]
$$
\vspace{20pt}
Residues become very large $\hence$ $p$-values decreases.

View File

@ -1,87 +1,81 @@
# Kolmogorov - Smirnov test # MC simulations
## KS ## In summary
Quantify distance between expected and observed CDF -----------------------------------------------------
Landau Moyal
----------------- ----------------- -----------------
median $m_L\ex$ $m_M\ex (μ, σ)$
. . . mode $\mu_L\ex$ $\mu_M\ex (μ)$
KS statistic: FWHM $w_L\ex$ $w_M\ex (σ)$
-----------------------------------------------------
## Moyal parameters
A $M(x)$ similar to $L(x)$ can be found by imposing:
\vspace{15pt}
- equal mode
$$ $$
D_N = \text{sup}_x |F_N(x) - F(x)| \mu_M\ex = \mu_L\ex \approx 0.22278298...
$$
- $F(x)$ is the expected CDF
- $F_N(x)$ is the empirical CDF of $N$ sampled points
- sort points in ascending order
- number of points preceding the point normalized by $N$
## KS
$H_0$: points sampled according to $F(x)$
. . .
If $H_0$ is true:
- $\sqrt{N}D_N \xrightarrow{N \rightarrow + \infty} K$
Kolmogorov distribution with CDF:
$$
P(K \leqslant K_0) = 1 - p = \frac{\sqrt{2 \pi}}{K_0}
\sum_{j = 1}^{+ \infty} e^{-(2j - 1)^2 \pi^2 / 8 K_0^2}
$$ $$
. . . . . .
a $p$-value can be computed - equal width
$$
w_M\ex = w_L\ex = \sigma \cdot a
$$
- At 95% confidence level, $H_0$ cannot be disproved if $p > 0.05$ $$
\implies \sigma_M \approx 1.1191486...
$$
# Samples results ## Moyal parameters
## Samples results
$N = 50000$ sampled points
. . .
Landau sample:
:::: {.columns} :::: {.columns}
::: {.column width=50%} ::: {.column width=50%}
- $D = 0.004$ ![](images/both-pdf-bef.pdf)
- $p = 0.379$
::: :::
::: {.column width=50%} ::: {.column width=50%}
$$ ![](images/both-pdf-aft.pdf)
\hence \text{Compatible!}
$$
::: :::
:::: ::::
\vspace{10pt}
## Moyal parameters
This leads to more different medians:
\begin{align*}
m_M = 0.787... \thus &m_M = 0.658... \\
&m_L = 1.355...
\end{align*}
## Compatibility test
Comparing results:
$$
p = 1 - \text{erf} \left( \frac{t}{\sqrt{2}} \right)\ \with
t = \frac{|x\ex - x\ob|}{\sqrt{\sigma\ex^2 + \sigma\ob^2}}
$$
- $x\ex$ and $x\ob$ are the expected and observed values
- $\sigma\ex$ and $\sigma\ob$ are their absolute errors
. . . . . .
Moyal sample: At 95% confidence level, the values are compatible if:
:::: {.columns}
::: {.column width=50%}
- $D = 0.153$
- $p = 0.000$
:::
::: {.column width=50%}
$$ $$
\hence \text{Not compatible!} p > 0.05
$$ $$
:::
::::

View File

@ -1,184 +1,198 @@
# Trapani test # Landau sample
## Infinite moments ## Sample
For a Landau PDF: Sample N = 50'000 random points following $L(x)$
\begin{align*}
E_L[x] &\longrightarrow + \infty \\ $$
V_L[x] \text{undefined} L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
\end{align*} dt \, e^{-t \ln(t) -xt} \sin (\pi t)
$$
. . . . . .
For a Moyal PDF: gsl_ran_Landau(gsl_rng)
\begin{align*}
E_M[x] &= \mu + \sigma [ \gamma + \ln(2) ] \\
V_M[x] &= \frac{\pi^2 \sigma^2}{2}
\end{align*}
## Infinite moments ## Compatibility results:
- Check whether a moment is finite or infinite Median:
\begin{align*}
\text{infinite} &\thus Landau \\
\text{finite} &\thus Moyal
\end{align*}
. . .
# Trapani test
## Trapani test
::: incremental
- Random variable $\left\{ x_i \right\}$ sampled from a distribution $f$
- Sample moments according to $f$ moments
- $H_0$: $\mu_k \longrightarrow + \infty$
- Statistic with 1 dof chi-squared distribution
:::: {.columns}
::: {.column width=50%}
- $t = 0.761$
- $p = 0.446$
::: :::
::: {.column width=50%}
## Trapani test
- Start with $\left\{ x_i \right\}^N$ and compute $\mu_k$ as:
$$ $$
\mu_k = \frac{1}{N} \sum_{i = 1}^N |x_i|^k \hence \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
Mode:
:::: {.columns}
::: {.column width=50%}
- $t = 1.012$
- $p = 0.311$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
FWHM:
:::: {.columns}
::: {.column width=50%}
- $t=1.338$
- $p=0.181$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
# Moyal sample
## Sample
Sample N = 50'000 random points following $M_{\mu \sigma}(x)$
$$
M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
\left[ - \frac{1}{2} \left(
\frac{x - \mu}{\sigma}
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
$$ $$
. . . . . .
- Generate $r$ points $\left\{ \xi_j\right\}^r$ according to $G(0, 1)$ and define reverse sampling
$\left\{ a_j \right\}^r$ as:
- sampling $y$ uniformly in [0, 1] $\hence x = Q_M(y)$
## Compatibility results:
Median:
:::: {.columns}
::: {.column width=50%}
- $t = 669.940$
- $p = 0.000$
:::
::: {.column width=50%}
$$ $$
a_j = \sqrt{e^{\mu_k}} \cdot \xi_j \hence \text{Not compatible!}
\thus G'\left( 0, \sqrt{e^{\mu_k}} \right)
$$ $$
:::
::::
\vspace{10pt}
. . . . . .
The greater $\mu^k$, the 'larger' $G'$ Mode:
- if $\mu_k \longrightarrow + \infty \thus a_j$ distributed uniformly :::: {.columns}
::: {.column width=50%}
- $t = 0.732$
- $p = 0.464$
:::
::: {.column width=50%}
## Trapani test
- Define the sequence: $\left\{ \zeta_j (u) \right\}^r$ as:
$$ $$
\zeta_j (u) = \theta( u - a_j) \with \theta - \text{Heaviside} \hence \text{Compatible!}
$$ $$
:::
::::
\vspace{10pt}
. . . . . .
\begin{center} FWHM:
\begin{tikzpicture}
\definecolor{cyclamen}{RGB}{146,24,43} :::: {.columns}
% line ::: {.column width=50%}
\draw [line width=3, ->, cyclamen] (0,0) -- (10,0); - $t = 1.329$
\node [right] at (10,0) {$u$}; - $p = 0.184$
% tic :::
\draw [thick] (5,-0.3) -- (5,0.3);
\node [above] at (5,0.3) {$u_0$}; ::: {.column width=50%}
% aj tics $$
\draw [thick, cyclamen] (1,-0.2) -- (1,0.2); \hence \text{Compatible!}
\node [below right, cyclamen] at (1,-0.2) {$a_{j+2}$}; $$
\draw [thick, cyclamen] (2,-0.2) -- (2,0.2); :::
\node [below right, cyclamen] at (2,-0.2) {$a_j$}; ::::
\draw [thick, cyclamen] (5.2,-0.2) -- (5.2,0.2);
\node [below right, cyclamen] at (5.2,-0.2) {$a_{j+2}$};
\draw [thick, cyclamen] (6,-0.2) -- (6,0.2); # KS results
\node [below right, cyclamen] at (6,-0.2) {$a_{j+3}$};
\draw [thick, cyclamen] (8.5,-0.2) -- (8.5,0.2);
\node [below right, cyclamen] at (8.5,-0.2) {$a_{j+4}$}; ## Samples results
% notes
\node [below] at (1,-1) {0}; $N = 50000$ sampled points
\node [below] at (2,-1) {0};
\node [below] at (5.2,-1) {1};
\node [below] at (6,-1) {1};
\node [below] at (8.5,-1) {1};
\draw [thick, ->] (1,-0.5) -- (1,-1);
\draw [thick, ->] (2,-0.5) -- (2,-1);
\draw [thick, ->] (5.2,-0.5) -- (5.2,-1);
\draw [thick, ->] (6,-0.5) -- (6,-1);
\draw [thick, ->] (8.5,-0.5) -- (8.5,-1);
\end{tikzpicture}
\end{center}
. . . . . .
If $a_j$ uniformly distributed and $N \rightarrow + \infty$: Landau sample:
- $\zeta_j (u)$ Bernoulli PDF with $P(\zeta_j (u) = 1) = \frac{1}{2}$ :::: {.columns}
::: {.column width=50%}
- $D = 0.004$
- $p = 0.379$
:::
::: {.column width=50%}
## Trapani test
- Define the function $\vartheta (u)$ as:
$$ $$
\vartheta (u) = \frac{2}{\sqrt{r}} \hence \text{Compatible!}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
$$ $$
:::
::::
\vspace{10pt}
. . . . . .
If $a_j$ uniformly distributed and $N \rightarrow + \infty$, for the CLT: Moyal sample:
:::: {.columns}
::: {.column width=50%}
- $D = 0.153$
- $p = 0.000$
:::
::: {.column width=50%}
$$ $$
\sum_j \zeta_j (u) \hence \hence \text{Not compatible!}
G \left( \frac{r}{2}, \frac{r}{4} \right)
\thus \vartheta (u) \hence
G \left( 0, 1 \right)
$$
. . .
- Test statistic:
$$
\Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u)
$$ $$
:::
::::
## Trapani test # Trapani results
According to L. Trapani (10.1016/j.jeconom.2015.08.006):
- $r = o(N) \hence r = N^{0.75}$
- $\underbar{u} = 1 \quad \wedge \quad \bar{u} = 1$
- $\psi(u) = \chi_{[\underbar{u}, \bar{u}]}$
. . .
$\mu_k$ must be scale invariant for $k > 1$:
$$
\tilde{\mu_k} = \frac{\mu_k}{ \left( \mu_{\phi} \right)^{k/\phi} }
\with \phi \in (0, k)
$$
## Trapani test
If $\mu_k \ne + \infty \hence \left\{ a_j \right\}$ are not uniformly distributed
\vspace{20pt}
Rewriting:
$$
\vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
= \frac{2}{\sqrt{r}}
\sum_{j} \left[ \zeta_j (u) - \frac{1}{2} \right]
$$
\vspace{20pt}
Residues become very large $\hence$ $p$-values decreases.
# Samples results
## Samples results ## Samples results