slides: more corrections
This commit is contained in:
parent
5a8c0d3fa5
commit
96812a912c
@ -55,7 +55,7 @@
|
|||||||
## Landau median
|
## Landau median
|
||||||
|
|
||||||
- CDF computed by numerical integration
|
- CDF computed by numerical integration
|
||||||
- Mean computed by numerical root-finding
|
- Median computed by numerical root-finding
|
||||||
$$
|
$$
|
||||||
F(x) = \frac{1}{2} \thus m_L\ex = 1.3557804...
|
F(x) = \frac{1}{2} \thus m_L\ex = 1.3557804...
|
||||||
$$
|
$$
|
||||||
|
@ -141,7 +141,7 @@ $$
|
|||||||
% placeholder
|
% placeholder
|
||||||
\draw [transparent] (-2.7,-0.2) rectangle (3,3.3);
|
\draw [transparent] (-2.7,-0.2) rectangle (3,3.3);
|
||||||
% bandwidth 1
|
% bandwidth 1
|
||||||
\node <4,5> [left] at (2.9,3) {$\epsilon = 1$};
|
\node <4,5> [left] at (2.9,3) {$\varepsilon = 1$};
|
||||||
% points
|
% points
|
||||||
\draw <3-> [yellow!50!black, fill=yellow] (-1.2,-0.2) rectangle (-1,0);
|
\draw <3-> [yellow!50!black, fill=yellow] (-1.2,-0.2) rectangle (-1,0);
|
||||||
\draw <3-> [yellow!50!black, fill=yellow] (-0.1,-0.2) rectangle (0.1,0);
|
\draw <3-> [yellow!50!black, fill=yellow] (-0.1,-0.2) rectangle (0.1,0);
|
||||||
|
@ -88,7 +88,7 @@
|
|||||||
\thus G\left( 0, \sqrt{e^{\mu_k}} \right)
|
\thus G\left( 0, \sqrt{e^{\mu_k}} \right)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
- The greater $\mu^k$, the 'larger' $G\left( 0, \sqrt{e^{\mu_k}} \right)$
|
- The greater $\mu_k$, the 'larger' $G\left( 0, \sqrt{e^{\mu_k}} \right)$
|
||||||
$$
|
$$
|
||||||
\begin{cases}
|
\begin{cases}
|
||||||
\mu_k \longrightarrow + \infty \\
|
\mu_k \longrightarrow + \infty \\
|
||||||
@ -155,20 +155,20 @@ $$
|
|||||||
|
|
||||||
::: incremental
|
::: incremental
|
||||||
|
|
||||||
- Define the function $\vartheta (u)$ as:
|
|
||||||
$$
|
|
||||||
\vartheta (u) = \frac{2}{\sqrt{r}}
|
|
||||||
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
|
|
||||||
$$
|
|
||||||
|
|
||||||
- If $a_j$ uniformly distributed, by the CLT:
|
- If $a_j$ uniformly distributed, by the CLT:
|
||||||
$$
|
$$
|
||||||
\sum_j \zeta_j (u) \hence
|
\sum_j \zeta_j (u) \hence
|
||||||
G \left( \frac{r}{2}, \frac{\sqrt{r}}{2} \right)
|
G \left( \frac{r}{2}, \frac{\sqrt{r}}{2} \right)
|
||||||
\thus \vartheta (u) \hence
|
|
||||||
G \left( 0, 1 \right)
|
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
- Define the function $\vartheta (u)$ as:
|
||||||
|
$$
|
||||||
|
\vartheta (u) = \frac{2}{\sqrt{r}}
|
||||||
|
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
|
||||||
|
\to G \left( 0, 1 \right)
|
||||||
|
$$
|
||||||
|
|
||||||
|
|
||||||
- Test statistic:
|
- Test statistic:
|
||||||
$$
|
$$
|
||||||
\Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u)
|
\Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u)
|
||||||
|
Loading…
Reference in New Issue
Block a user