diff --git a/slides/sections/2.md b/slides/sections/2.md index 77d36b1..a03d289 100644 --- a/slides/sections/2.md +++ b/slides/sections/2.md @@ -55,7 +55,7 @@ ## Landau median - CDF computed by numerical integration -- Mean computed by numerical root-finding +- Median computed by numerical root-finding $$ F(x) = \frac{1}{2} \thus m_L\ex = 1.3557804... $$ diff --git a/slides/sections/4.md b/slides/sections/4.md index b72d72c..d9c1631 100644 --- a/slides/sections/4.md +++ b/slides/sections/4.md @@ -141,7 +141,7 @@ $$ % placeholder \draw [transparent] (-2.7,-0.2) rectangle (3,3.3); % bandwidth 1 - \node <4,5> [left] at (2.9,3) {$\epsilon = 1$}; + \node <4,5> [left] at (2.9,3) {$\varepsilon = 1$}; % points \draw <3-> [yellow!50!black, fill=yellow] (-1.2,-0.2) rectangle (-1,0); \draw <3-> [yellow!50!black, fill=yellow] (-0.1,-0.2) rectangle (0.1,0); diff --git a/slides/sections/6.md b/slides/sections/6.md index 9a06898..5709e9b 100644 --- a/slides/sections/6.md +++ b/slides/sections/6.md @@ -88,7 +88,7 @@ \thus G\left( 0, \sqrt{e^{\mu_k}} \right) $$ -- The greater $\mu^k$, the 'larger' $G\left( 0, \sqrt{e^{\mu_k}} \right)$ +- The greater $\mu_k$, the 'larger' $G\left( 0, \sqrt{e^{\mu_k}} \right)$ $$ \begin{cases} \mu_k \longrightarrow + \infty \\ @@ -155,20 +155,20 @@ $$ ::: incremental -- Define the function $\vartheta (u)$ as: -$$ - \vartheta (u) = \frac{2}{\sqrt{r}} - \left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right] -$$ - - If $a_j$ uniformly distributed, by the CLT: $$ \sum_j \zeta_j (u) \hence G \left( \frac{r}{2}, \frac{\sqrt{r}}{2} \right) - \thus \vartheta (u) \hence - G \left( 0, 1 \right) $$ +- Define the function $\vartheta (u)$ as: +$$ + \vartheta (u) = \frac{2}{\sqrt{r}} + \left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right] + \to G \left( 0, 1 \right) +$$ + + - Test statistic: $$ \Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u)