slides: more corrections

This commit is contained in:
Michele Guerini Rocco 2020-07-08 16:09:44 +02:00
parent 5a8c0d3fa5
commit 96812a912c
Signed by: rnhmjoj
GPG Key ID: BFBAF4C975F76450
3 changed files with 11 additions and 11 deletions

View File

@ -55,7 +55,7 @@
## Landau median ## Landau median
- CDF computed by numerical integration - CDF computed by numerical integration
- Mean computed by numerical root-finding - Median computed by numerical root-finding
$$ $$
F(x) = \frac{1}{2} \thus m_L\ex = 1.3557804... F(x) = \frac{1}{2} \thus m_L\ex = 1.3557804...
$$ $$

View File

@ -141,7 +141,7 @@ $$
% placeholder % placeholder
\draw [transparent] (-2.7,-0.2) rectangle (3,3.3); \draw [transparent] (-2.7,-0.2) rectangle (3,3.3);
% bandwidth 1 % bandwidth 1
\node <4,5> [left] at (2.9,3) {$\epsilon = 1$}; \node <4,5> [left] at (2.9,3) {$\varepsilon = 1$};
% points % points
\draw <3-> [yellow!50!black, fill=yellow] (-1.2,-0.2) rectangle (-1,0); \draw <3-> [yellow!50!black, fill=yellow] (-1.2,-0.2) rectangle (-1,0);
\draw <3-> [yellow!50!black, fill=yellow] (-0.1,-0.2) rectangle (0.1,0); \draw <3-> [yellow!50!black, fill=yellow] (-0.1,-0.2) rectangle (0.1,0);

View File

@ -88,7 +88,7 @@
\thus G\left( 0, \sqrt{e^{\mu_k}} \right) \thus G\left( 0, \sqrt{e^{\mu_k}} \right)
$$ $$
- The greater $\mu^k$, the 'larger' $G\left( 0, \sqrt{e^{\mu_k}} \right)$ - The greater $\mu_k$, the 'larger' $G\left( 0, \sqrt{e^{\mu_k}} \right)$
$$ $$
\begin{cases} \begin{cases}
\mu_k \longrightarrow + \infty \\ \mu_k \longrightarrow + \infty \\
@ -155,20 +155,20 @@ $$
::: incremental ::: incremental
- Define the function $\vartheta (u)$ as:
$$
\vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
$$
- If $a_j$ uniformly distributed, by the CLT: - If $a_j$ uniformly distributed, by the CLT:
$$ $$
\sum_j \zeta_j (u) \hence \sum_j \zeta_j (u) \hence
G \left( \frac{r}{2}, \frac{\sqrt{r}}{2} \right) G \left( \frac{r}{2}, \frac{\sqrt{r}}{2} \right)
\thus \vartheta (u) \hence
G \left( 0, 1 \right)
$$ $$
- Define the function $\vartheta (u)$ as:
$$
\vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
\to G \left( 0, 1 \right)
$$
- Test statistic: - Test statistic:
$$ $$
\Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u) \Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u)