ex-4: review
This commit is contained in:
parent
a7d923620a
commit
89596f7f25
@ -24,7 +24,6 @@ $|P_v|$ of the particles with a given $P_h$?
|
|||||||
\node at (8.5,0.9) {$y$};
|
\node at (8.5,0.9) {$y$};
|
||||||
\node at (5,8.4) {$z$};
|
\node at (5,8.4) {$z$};
|
||||||
% Momentum
|
% Momentum
|
||||||
\definecolor{cyclamen}{RGB}{146, 24, 43}
|
|
||||||
\draw [ultra thick, ->, cyclamen] (5,2) -- (3.8,6);
|
\draw [ultra thick, ->, cyclamen] (5,2) -- (3.8,6);
|
||||||
\draw [thick, dashed, cyclamen] (3.8,0.8) -- (3.8,6);
|
\draw [thick, dashed, cyclamen] (3.8,0.8) -- (3.8,6);
|
||||||
\draw [thick, dashed, cyclamen] (5,7.2) -- (3.8,6);
|
\draw [thick, dashed, cyclamen] (5,7.2) -- (3.8,6);
|
||||||
@ -52,7 +51,6 @@ $$
|
|||||||
{\int_{\{ P_v \}} d P_v f_{P_h , P_v} (x, P_v)}
|
{\int_{\{ P_v \}} d P_v f_{P_h , P_v} (x, P_v)}
|
||||||
= \frac{f_{P_h , P_v} (x, P_v)}{I}
|
= \frac{f_{P_h , P_v} (x, P_v)}{I}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
where $f_{P_h , P_v}$ is the joint PDF of the two variables $P_v$ and $P_h$ and
|
where $f_{P_h , P_v}$ is the joint PDF of the two variables $P_v$ and $P_h$ and
|
||||||
the integral $I$ runs over all the possible values of $P_v$ given a certain
|
the integral $I$ runs over all the possible values of $P_v$ given a certain
|
||||||
$P_h$.
|
$P_h$.
|
||||||
@ -62,12 +60,10 @@ same considerations done in @sec:3 lead to:
|
|||||||
$$
|
$$
|
||||||
f_{\theta} (\theta) = \frac{1}{2} \sin{\theta} \chi_{[0, \pi]} (\theta)
|
f_{\theta} (\theta) = \frac{1}{2} \sin{\theta} \chi_{[0, \pi]} (\theta)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
whereas, being $P$ uniform:
|
whereas, being $P$ uniform:
|
||||||
$$
|
$$
|
||||||
f_P (P) = \chi_{[0, P_{\text{max}}]} (P)
|
f_P (P) = \chi_{[0, P_{\text{max}}]} (P)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
where $\chi_{[a, b]} (y)$ is the normalized characteristic function which value
|
where $\chi_{[a, b]} (y)$ is the normalized characteristic function which value
|
||||||
is $1/N$ between $a$ and $b$ (where $N$ is the normalization term) and 0
|
is $1/N$ between $a$ and $b$ (where $N$ is the normalization term) and 0
|
||||||
elsewhere. Since $P,\theta$ are independent variables, their joint PDF is
|
elsewhere. Since $P,\theta$ are independent variables, their joint PDF is
|
||||||
@ -77,9 +73,8 @@ $$
|
|||||||
= \frac{1}{2} \sin{\theta} \chi_{[0, \pi]} (\theta)
|
= \frac{1}{2} \sin{\theta} \chi_{[0, \pi]} (\theta)
|
||||||
\chi_{[0, P_{\text{max}}]} (P)
|
\chi_{[0, P_{\text{max}}]} (P)
|
||||||
$$
|
$$
|
||||||
and they are related to the vertical and horizontal components
|
and they are related to the vertical and horizontal components by a standard
|
||||||
by a standard polar coordinate transformation:
|
polar coordinate transformation:
|
||||||
|
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\begin{cases}
|
\begin{cases}
|
||||||
P_v = P \cos(\theta) \\
|
P_v = P \cos(\theta) \\
|
||||||
@ -91,12 +86,12 @@ by a standard polar coordinate transformation:
|
|||||||
\theta = \text{atan2}(P_h, P_v)
|
\theta = \text{atan2}(P_h, P_v)
|
||||||
\end{cases}
|
\end{cases}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
where:
|
where:
|
||||||
|
|
||||||
- $\theta \in [0, \pi]$,
|
- $\theta \in [0, \pi]$,
|
||||||
|
|
||||||
- and atan2 is defined by:
|
- and atan2 is defined by:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{cases}
|
\begin{cases}
|
||||||
\arctan(P_h/P_v) &\incase P_v > 0 \\
|
\arctan(P_h/P_v) &\incase P_v > 0 \\
|
||||||
@ -104,7 +99,6 @@ $$
|
|||||||
\arctan(P_h/P_v) + \pi &\incase P_v < 0
|
\arctan(P_h/P_v) + \pi &\incase P_v < 0
|
||||||
\end{cases}
|
\end{cases}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
The Jacobian of the inverse transformation is easily found to be:
|
The Jacobian of the inverse transformation is easily found to be:
|
||||||
$$
|
$$
|
||||||
|J^{-1}| = \frac{1}{\sqrt{P_v^2 + P_h^2}}
|
|J^{-1}| = \frac{1}{\sqrt{P_v^2 + P_h^2}}
|
||||||
@ -117,9 +111,8 @@ $$
|
|||||||
\frac{\chi_{[0, p_{\text{max}}]} \left(\sqrt{P_v^2 + P_h^2} \right)}
|
\frac{\chi_{[0, p_{\text{max}}]} \left(\sqrt{P_v^2 + P_h^2} \right)}
|
||||||
{\sqrt{P_v^2 + P_h^2}}
|
{\sqrt{P_v^2 + P_h^2}}
|
||||||
$$
|
$$
|
||||||
|
The integral $I$ can now be computed. Note that the domain is implicit in the
|
||||||
The integral $I$ can now be computed. Note that the domain
|
characteristic functions:
|
||||||
is implicit in the characteristic function:
|
|
||||||
$$
|
$$
|
||||||
I(x) = \int_{-\infty}^{+\infty} dP_v \, f_{P_h , P_v} (x, P_v)
|
I(x) = \int_{-\infty}^{+\infty} dP_v \, f_{P_h , P_v} (x, P_v)
|
||||||
= \int \limits_{- \sqrt{P_{\text{max}}^2 - P_h}}
|
= \int \limits_{- \sqrt{P_{\text{max}}^2 - P_h}}
|
||||||
@ -143,7 +136,6 @@ $$
|
|||||||
\chi_{[0, p_{\text{max}}]} \left(\sqrt{P_v^2 + P_h^2}\right)}{2 \, \arctan
|
\chi_{[0, p_{\text{max}}]} \left(\sqrt{P_v^2 + P_h^2}\right)}{2 \, \arctan
|
||||||
\left( \sqrt{\frac{P_{\text{max}}^2}{x^2} - 1} \right)}
|
\left( \sqrt{\frac{P_{\text{max}}^2}{x^2} - 1} \right)}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
Finally, putting all the pieces together, the average value of $|P_v|$ can be
|
Finally, putting all the pieces together, the average value of $|P_v|$ can be
|
||||||
computed:
|
computed:
|
||||||
$$
|
$$
|
||||||
@ -152,7 +144,6 @@ $$
|
|||||||
= \frac{x \ln \left( \frac{P_{\text{max}}}{x} \right)}
|
= \frac{x \ln \left( \frac{P_{\text{max}}}{x} \right)}
|
||||||
{\arctan \left( \sqrt{ \frac{P^2_{\text{max}}}{x^2} - 1} \right)}
|
{\arctan \left( \sqrt{ \frac{P^2_{\text{max}}}{x^2} - 1} \right)}
|
||||||
$$ {#eq:dip}
|
$$ {#eq:dip}
|
||||||
|
|
||||||
The result is plotted in the figure below:
|
The result is plotted in the figure below:
|
||||||
|
|
||||||
![Plot of the expected dependence of $\langle |P_v| \rangle$ with
|
![Plot of the expected dependence of $\langle |P_v| \rangle$ with
|
||||||
@ -163,30 +154,28 @@ The result is plotted in the figure below:
|
|||||||
|
|
||||||
This dependence should be found by running a Monte Carlo simulation and
|
This dependence should be found by running a Monte Carlo simulation and
|
||||||
computing a binned average of the vertical momentum. A number of $N = 50000$
|
computing a binned average of the vertical momentum. A number of $N = 50000$
|
||||||
particles were generated as pair of values ($P$, $\theta$), with $P$
|
particles was generated as pairs of values ($P$, $\theta$), with $P$ uniformly
|
||||||
uniformly distributed between 0 and $P_{\text{max}}$ and $\theta$ given by the
|
distributed between 0 and $P_{\text{max}}$ and $\theta$ given by the same
|
||||||
same procedure described in @sec:3, namely:
|
procedure described in @sec:3, namely:
|
||||||
$$
|
$$
|
||||||
\theta = \arccos(1 - 2x)
|
\theta = \arccos(1 - 2x)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
where $x$ is uniformly distributed between 0 and 1.
|
where $x$ is uniformly distributed between 0 and 1.
|
||||||
The binning turned out to be quite a challenge: once a $P$ is sampled and
|
The binning turned out to be quite a challenge: once a $P$ is sampled and
|
||||||
$P_h$ computed, the bin containing the latter has to be found. If
|
$P_h$ computed, the bin containing the latter has to be found. If
|
||||||
the range $[0, P_{\text{max}}]$ is divided into $n$ equal bins
|
the range $[0, P_{\text{max}}]$ is divided into $n$ equal bins
|
||||||
of the width
|
of width:
|
||||||
$$
|
$$
|
||||||
w = \frac{P_{\text{max}}}{n}
|
w = \frac{P_{\text{max}}}{n}
|
||||||
$$
|
$$
|
||||||
then (counting from zero) $P_h$ goes into the $i$-th bin where
|
then (counting from zero) $P_h$ goes into the $i$-th bin, where:
|
||||||
$$
|
$$
|
||||||
i = \left\lfloor \frac{P_h}{w} \right\rfloor
|
i = \left\lfloor \frac{P_h}{w} \right\rfloor
|
||||||
$$
|
$$
|
||||||
|
|
||||||
Then, the sum $S_j$ of all the $|P_v|$ values relative to the $P_h$ of the
|
Then, the sum $S_j$ of all the $|P_v|$ values relative to the $P_h$ of the
|
||||||
$j$-th bin itself and number num$_j$ of the bin counts are stored in an array
|
$j$-th bin and the number num$_j$ of the bin counts are stored in an array
|
||||||
and iteratively updated. Once every bin has been updated, the average value of
|
and iteratively updated. Once every point has been sampled, the average value
|
||||||
$|P_v|_j$ is computed as $S_j / \text{num}_j$.
|
of $|P_v|_j$ is computed as $S_j / \text{num}_j$.
|
||||||
|
|
||||||
For the sake of clarity, for each sampled couple the procedure is the
|
For the sake of clarity, for each sampled couple the procedure is the
|
||||||
following. At first $S_j = 0 \wedge \text{num}_j = 0 \, \forall \, j$, then:
|
following. At first $S_j = 0 \wedge \text{num}_j = 0 \, \forall \, j$, then:
|
||||||
@ -217,14 +206,12 @@ The following results were obtained:
|
|||||||
|
|
||||||
The $\chi^2$ and $p$-value show a very good agreement.
|
The $\chi^2$ and $p$-value show a very good agreement.
|
||||||
In order to compare $P^{\text{oss}}_{\text{max}}$ with the expected value
|
In order to compare $P^{\text{oss}}_{\text{max}}$ with the expected value
|
||||||
$P_{\text{max}} = 10$, the following compatibility $t$-test was applied:
|
$P_{\text{max}} = 10$, the usual compatibility $t$-test was applied:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
p = 1 - \text{erf}\left(\frac{t}{\sqrt{2}}\right)\ \with
|
p = 1 - \text{erf}\left(\frac{t}{\sqrt{2}}\right)\ \with
|
||||||
t = \frac{|P^{\text{oss}}_{\text{max}} - P_{\text{max}}|}
|
t = \frac{|P^{\text{oss}}_{\text{max}} - P_{\text{max}}|}
|
||||||
{\Delta P^{\text{oss}}_{\text{max}}}
|
{\Delta P^{\text{oss}}_{\text{max}}}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
where $\Delta P^{\text{oss}}_{\text{max}}$ is the $P^{\text{oss}}_{\text{max}}$
|
where $\Delta P^{\text{oss}}_{\text{max}}$ is the $P^{\text{oss}}_{\text{max}}$
|
||||||
uncertainty. At 95% confidence level, the values are compatible if $p > 0.05$.
|
uncertainty. At 95% confidence level, the values are compatible if $p > 0.05$.
|
||||||
In this case:
|
In this case:
|
||||||
|
Loading…
Reference in New Issue
Block a user