slides: review Trapani section
This commit is contained in:
parent
32a37f312e
commit
8620e80c83
@ -76,13 +76,13 @@
|
|||||||
|
|
||||||
## Trapani test
|
## Trapani test
|
||||||
|
|
||||||
|
::: incremental
|
||||||
|
|
||||||
- Start with $\left\{ x_i \right\}^N$ and compute $\mu_k$ as:
|
- Start with $\left\{ x_i \right\}^N$ and compute $\mu_k$ as:
|
||||||
$$
|
$$
|
||||||
\mu_k = \frac{1}{N} \sum_{i = 1}^N |x_i|^k
|
\mu_k = \frac{1}{N} \sum_{i = 1}^N |x_i|^k
|
||||||
$$
|
$$
|
||||||
|
|
||||||
. . .
|
|
||||||
|
|
||||||
- Generate $r$ points $\left\{ \xi_j\right\}^r$ according to $G(0, 1)$ and define
|
- Generate $r$ points $\left\{ \xi_j\right\}^r$ according to $G(0, 1)$ and define
|
||||||
$\left\{ a_j \right\}^r$ as:
|
$\left\{ a_j \right\}^r$ as:
|
||||||
$$
|
$$
|
||||||
@ -90,9 +90,7 @@
|
|||||||
\thus G\left( 0, \sqrt{e^{\mu_k}} \right)
|
\thus G\left( 0, \sqrt{e^{\mu_k}} \right)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
. . .
|
- The greater $\mu^k$, the 'larger' $G\left( 0, \sqrt{e^{\mu_k}} \right)$
|
||||||
|
|
||||||
The greater $\mu^k$, the 'larger' $G\left( 0, \sqrt{e^{\mu_k}} \right)$
|
|
||||||
$$
|
$$
|
||||||
\begin{cases}
|
\begin{cases}
|
||||||
\mu_k \longrightarrow + \infty \\
|
\mu_k \longrightarrow + \infty \\
|
||||||
@ -101,6 +99,8 @@ $$
|
|||||||
\thus a_j \text{ distributed uniformly}
|
\thus a_j \text{ distributed uniformly}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
:::
|
||||||
|
|
||||||
|
|
||||||
## Trapani test
|
## Trapani test
|
||||||
|
|
||||||
@ -146,24 +146,24 @@ $$
|
|||||||
|
|
||||||
. . .
|
. . .
|
||||||
|
|
||||||
If $a_j$ uniformly distributed:
|
- If $a_j$ uniformly distributed:
|
||||||
|
|
||||||
- $\zeta_j (u)$ Bernoulli PDF with $P\left( \zeta_j (u) = 1 \right) = \frac{1}{2}$
|
$\zeta_j (u)$ Bernoulli PDF with $P\left( \zeta_j (u) = 1 \right) = \frac{1}{2}$
|
||||||
$\hence \text{E}[\zeta_j]_j = \frac{1}{2}
|
$\hence \text{E}[\zeta_j]_j = \frac{1}{2}
|
||||||
\quad \wedge \quad \text{Var}[\zeta_j]_j = \frac{1}{4}$
|
\quad \wedge \quad \text{Var}[\zeta_j]_j = \frac{1}{4}$
|
||||||
|
|
||||||
|
|
||||||
## Trapani test
|
## Trapani test
|
||||||
|
|
||||||
|
::: incremental
|
||||||
|
|
||||||
- Define the function $\vartheta (u)$ as:
|
- Define the function $\vartheta (u)$ as:
|
||||||
$$
|
$$
|
||||||
\vartheta (u) = \frac{2}{\sqrt{r}}
|
\vartheta (u) = \frac{2}{\sqrt{r}}
|
||||||
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
|
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
|
||||||
$$
|
$$
|
||||||
|
|
||||||
. . .
|
- If $a_j$ uniformly distributed, for the CLT:
|
||||||
|
|
||||||
If $a_j$ uniformly distributed, for the CLT:
|
|
||||||
$$
|
$$
|
||||||
\sum_j \zeta_j (u) \hence
|
\sum_j \zeta_j (u) \hence
|
||||||
G \left( \frac{r}{2}, \frac{\sqrt{r}}{2} \right)
|
G \left( \frac{r}{2}, \frac{\sqrt{r}}{2} \right)
|
||||||
@ -171,48 +171,52 @@ $$
|
|||||||
G \left( 0, 1 \right)
|
G \left( 0, 1 \right)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
. . .
|
|
||||||
|
|
||||||
- Test statistic:
|
- Test statistic:
|
||||||
$$
|
$$
|
||||||
\Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u)
|
\Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
:::
|
||||||
|
|
||||||
|
|
||||||
|
## Trapani test
|
||||||
|
|
||||||
|
**Under** $\bold{H_0}$: $\mu_k \to +\infty$
|
||||||
|
|
||||||
|
- $\Theta \to \chi^2$ as $n,r \to +\infty$
|
||||||
|
|
||||||
|
. . .
|
||||||
|
|
||||||
|
**Under** $\bold{H_a}$: $\mu_k < + \infty$
|
||||||
|
|
||||||
|
::: incremental
|
||||||
|
|
||||||
|
- $\text{E}[\zeta_j] \neq \frac{1}{2}$
|
||||||
|
|
||||||
|
- the residues
|
||||||
|
$\vartheta (u) = \frac{2}{\sqrt{r}}
|
||||||
|
\sum_{j} \left[ \zeta_j (u) - \frac{1}{2} \right]$
|
||||||
|
become large
|
||||||
|
|
||||||
|
- $\Theta \to +\infty$ as $n,r \to +\infty$
|
||||||
|
|
||||||
|
:::
|
||||||
|
|
||||||
|
|
||||||
## Trapani test
|
## Trapani test
|
||||||
|
|
||||||
According to L. Trapani [@trapani15]:
|
According to L. Trapani [@trapani15]:
|
||||||
|
|
||||||
- $r = o(N) \hence r = N^{0.75}$
|
- $r = o(N) \hence r = N^{0.75}$
|
||||||
|
|
||||||
- $\underbar{u} = -1 \quad \wedge \quad \bar{u} = 1$
|
- $\underbar{u} = -1 \quad \wedge \quad \bar{u} = 1$
|
||||||
- $\psi(u) = \frac{1}{\bar{u} - \underbar{u}} \, \chi_{[\underbar{u}, \bar{u}]}$
|
|
||||||
|
- $\psi(u) = \frac{1}{2} \, \chi_{[\underbar{u}, \bar{u}]}$
|
||||||
|
|
||||||
. . .
|
. . .
|
||||||
|
|
||||||
$\mu_k$ must be scale invariant for $k > 1$:
|
$\mu_k$ must be scale invariant for $k > 1$:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\mu_k^* = \frac{\mu_k}{ \left( \mu_{\phi} \right)^{k/\phi} }
|
\mu_k^* = \frac{\mu_k}{ \left( \mu_{\phi} \right)^{k/\phi} }
|
||||||
\with \phi \in (0, k)
|
\with \phi \in (0, k)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
|
||||||
## Trapani test
|
|
||||||
|
|
||||||
If $\mu_k < + \infty \hence \left\{ a_j \right\}$ are not uniformly distributed
|
|
||||||
|
|
||||||
\vspace{20pt}
|
|
||||||
|
|
||||||
Rewriting:
|
|
||||||
$$
|
|
||||||
\vartheta (u) = \frac{2}{\sqrt{r}}
|
|
||||||
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
|
|
||||||
= \frac{2}{\sqrt{r}}
|
|
||||||
\sum_{j} \left[ \zeta_j (u) - \frac{1}{2} \right]
|
|
||||||
$$
|
|
||||||
|
|
||||||
\vspace{20pt}
|
|
||||||
|
|
||||||
. . .
|
|
||||||
|
|
||||||
Residues become very large $\hence$ $p$-values decreases.
|
|
||||||
|
Loading…
Reference in New Issue
Block a user