slides: review Trapani section

This commit is contained in:
Michele Guerini Rocco 2020-06-12 17:33:14 +02:00
parent 32a37f312e
commit 8620e80c83

View File

@ -76,13 +76,13 @@
## Trapani test ## Trapani test
::: incremental
- Start with $\left\{ x_i \right\}^N$ and compute $\mu_k$ as: - Start with $\left\{ x_i \right\}^N$ and compute $\mu_k$ as:
$$ $$
\mu_k = \frac{1}{N} \sum_{i = 1}^N |x_i|^k \mu_k = \frac{1}{N} \sum_{i = 1}^N |x_i|^k
$$ $$
. . .
- Generate $r$ points $\left\{ \xi_j\right\}^r$ according to $G(0, 1)$ and define - Generate $r$ points $\left\{ \xi_j\right\}^r$ according to $G(0, 1)$ and define
$\left\{ a_j \right\}^r$ as: $\left\{ a_j \right\}^r$ as:
$$ $$
@ -90,9 +90,7 @@
\thus G\left( 0, \sqrt{e^{\mu_k}} \right) \thus G\left( 0, \sqrt{e^{\mu_k}} \right)
$$ $$
. . . - The greater $\mu^k$, the 'larger' $G\left( 0, \sqrt{e^{\mu_k}} \right)$
The greater $\mu^k$, the 'larger' $G\left( 0, \sqrt{e^{\mu_k}} \right)$
$$ $$
\begin{cases} \begin{cases}
\mu_k \longrightarrow + \infty \\ \mu_k \longrightarrow + \infty \\
@ -101,6 +99,8 @@ $$
\thus a_j \text{ distributed uniformly} \thus a_j \text{ distributed uniformly}
$$ $$
:::
## Trapani test ## Trapani test
@ -146,24 +146,24 @@ $$
. . . . . .
If $a_j$ uniformly distributed: - If $a_j$ uniformly distributed:
- $\zeta_j (u)$ Bernoulli PDF with $P\left( \zeta_j (u) = 1 \right) = \frac{1}{2}$ $\zeta_j (u)$ Bernoulli PDF with $P\left( \zeta_j (u) = 1 \right) = \frac{1}{2}$
$\hence \text{E}[\zeta_j]_j = \frac{1}{2} $\hence \text{E}[\zeta_j]_j = \frac{1}{2}
\quad \wedge \quad \text{Var}[\zeta_j]_j = \frac{1}{4}$ \quad \wedge \quad \text{Var}[\zeta_j]_j = \frac{1}{4}$
## Trapani test ## Trapani test
::: incremental
- Define the function $\vartheta (u)$ as: - Define the function $\vartheta (u)$ as:
$$ $$
\vartheta (u) = \frac{2}{\sqrt{r}} \vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right] \left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
$$ $$
. . . - If $a_j$ uniformly distributed, for the CLT:
If $a_j$ uniformly distributed, for the CLT:
$$ $$
\sum_j \zeta_j (u) \hence \sum_j \zeta_j (u) \hence
G \left( \frac{r}{2}, \frac{\sqrt{r}}{2} \right) G \left( \frac{r}{2}, \frac{\sqrt{r}}{2} \right)
@ -171,48 +171,52 @@ $$
G \left( 0, 1 \right) G \left( 0, 1 \right)
$$ $$
. . .
- Test statistic: - Test statistic:
$$ $$
\Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u) \Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u)
$$ $$
:::
## Trapani test
**Under** $\bold{H_0}$: $\mu_k \to +\infty$
- $\Theta \to \chi^2$ as $n,r \to +\infty$
. . .
**Under** $\bold{H_a}$: $\mu_k < + \infty$
::: incremental
- $\text{E}[\zeta_j] \neq \frac{1}{2}$
- the residues
$\vartheta (u) = \frac{2}{\sqrt{r}}
\sum_{j} \left[ \zeta_j (u) - \frac{1}{2} \right]$
become large
- $\Theta \to +\infty$ as $n,r \to +\infty$
:::
## Trapani test ## Trapani test
According to L. Trapani [@trapani15]: According to L. Trapani [@trapani15]:
- $r = o(N) \hence r = N^{0.75}$ - $r = o(N) \hence r = N^{0.75}$
- $\underbar{u} = -1 \quad \wedge \quad \bar{u} = 1$ - $\underbar{u} = -1 \quad \wedge \quad \bar{u} = 1$
- $\psi(u) = \frac{1}{\bar{u} - \underbar{u}} \, \chi_{[\underbar{u}, \bar{u}]}$
- $\psi(u) = \frac{1}{2} \, \chi_{[\underbar{u}, \bar{u}]}$
. . . . . .
$\mu_k$ must be scale invariant for $k > 1$: $\mu_k$ must be scale invariant for $k > 1$:
$$ $$
\mu_k^* = \frac{\mu_k}{ \left( \mu_{\phi} \right)^{k/\phi} } \mu_k^* = \frac{\mu_k}{ \left( \mu_{\phi} \right)^{k/\phi} }
\with \phi \in (0, k) \with \phi \in (0, k)
$$ $$
## Trapani test
If $\mu_k < + \infty \hence \left\{ a_j \right\}$ are not uniformly distributed
\vspace{20pt}
Rewriting:
$$
\vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
= \frac{2}{\sqrt{r}}
\sum_{j} \left[ \zeta_j (u) - \frac{1}{2} \right]
$$
\vspace{20pt}
. . .
Residues become very large $\hence$ $p$-values decreases.