diff --git a/slides/sections/6.md b/slides/sections/6.md index 7c73acf..5104db6 100644 --- a/slides/sections/6.md +++ b/slides/sections/6.md @@ -76,13 +76,13 @@ ## Trapani test +::: incremental + - Start with $\left\{ x_i \right\}^N$ and compute $\mu_k$ as: $$ \mu_k = \frac{1}{N} \sum_{i = 1}^N |x_i|^k $$ -. . . - - Generate $r$ points $\left\{ \xi_j\right\}^r$ according to $G(0, 1)$ and define $\left\{ a_j \right\}^r$ as: $$ @@ -90,9 +90,7 @@ \thus G\left( 0, \sqrt{e^{\mu_k}} \right) $$ -. . . - -The greater $\mu^k$, the 'larger' $G\left( 0, \sqrt{e^{\mu_k}} \right)$ +- The greater $\mu^k$, the 'larger' $G\left( 0, \sqrt{e^{\mu_k}} \right)$ $$ \begin{cases} \mu_k \longrightarrow + \infty \\ @@ -101,6 +99,8 @@ $$ \thus a_j \text{ distributed uniformly} $$ +::: + ## Trapani test @@ -146,24 +146,24 @@ $$ . . . -If $a_j$ uniformly distributed: +- If $a_j$ uniformly distributed: -- $\zeta_j (u)$ Bernoulli PDF with $P\left( \zeta_j (u) = 1 \right) = \frac{1}{2}$ + $\zeta_j (u)$ Bernoulli PDF with $P\left( \zeta_j (u) = 1 \right) = \frac{1}{2}$ $\hence \text{E}[\zeta_j]_j = \frac{1}{2} \quad \wedge \quad \text{Var}[\zeta_j]_j = \frac{1}{4}$ ## Trapani test +::: incremental + - Define the function $\vartheta (u)$ as: $$ \vartheta (u) = \frac{2}{\sqrt{r}} \left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right] $$ -. . . - -If $a_j$ uniformly distributed, for the CLT: +- If $a_j$ uniformly distributed, for the CLT: $$ \sum_j \zeta_j (u) \hence G \left( \frac{r}{2}, \frac{\sqrt{r}}{2} \right) @@ -171,48 +171,52 @@ $$ G \left( 0, 1 \right) $$ -. . . - - Test statistic: $$ \Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u) $$ +::: + + +## Trapani test + +**Under** $\bold{H_0}$: $\mu_k \to +\infty$ + +- $\Theta \to \chi^2$ as $n,r \to +\infty$ + +. . . + +**Under** $\bold{H_a}$: $\mu_k < + \infty$ + +::: incremental + +- $\text{E}[\zeta_j] \neq \frac{1}{2}$ + +- the residues + $\vartheta (u) = \frac{2}{\sqrt{r}} + \sum_{j} \left[ \zeta_j (u) - \frac{1}{2} \right]$ + become large + +- $\Theta \to +\infty$ as $n,r \to +\infty$ + +::: + ## Trapani test According to L. Trapani [@trapani15]: - $r = o(N) \hence r = N^{0.75}$ + - $\underbar{u} = -1 \quad \wedge \quad \bar{u} = 1$ -- $\psi(u) = \frac{1}{\bar{u} - \underbar{u}} \, \chi_{[\underbar{u}, \bar{u}]}$ + +- $\psi(u) = \frac{1}{2} \, \chi_{[\underbar{u}, \bar{u}]}$ . . . $\mu_k$ must be scale invariant for $k > 1$: - $$ \mu_k^* = \frac{\mu_k}{ \left( \mu_{\phi} \right)^{k/\phi} } \with \phi \in (0, k) $$ - - -## Trapani test - -If $\mu_k < + \infty \hence \left\{ a_j \right\}$ are not uniformly distributed - -\vspace{20pt} - -Rewriting: -$$ - \vartheta (u) = \frac{2}{\sqrt{r}} - \left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right] - = \frac{2}{\sqrt{r}} - \sum_{j} \left[ \zeta_j (u) - \frac{1}{2} \right] -$$ - -\vspace{20pt} - -. . . - -Residues become very large $\hence$ $p$-values decreases.