ex-4: fix multi-line comment warnings

This commit is contained in:
Michele Guerini Rocco 2020-05-30 09:22:29 +00:00
parent 28664215e8
commit 681b1b62b8

View File

@ -7,18 +7,15 @@
#include <gsl/gsl_deriv.h>
// Process CLI arguments.
//
int parser(size_t *N, size_t *n, double *p_max, char argc, char **argv, size_t *go)
{
for (size_t i = 1; i < argc; i++)
{
/* Process CLI arguments and print usage */
int parser(size_t *N, size_t *n, double *p_max,
size_t argc, char **argv, size_t *go) {
for (size_t i = 1; i < argc; i++) {
if (!strcmp(argv[i], "-n")) *N = atol(argv[++i]);
else if (!strcmp(argv[i], "-b")) *n = atol(argv[++i]);
else if (!strcmp(argv[i], "-p")) *p_max = atof(argv[++i]);
else if (!strcmp(argv[i], "-o")) *go = 1;
else
{
else {
fprintf(stderr, "Usage: %s -[hnbpo]\n", argv[0]);
fprintf(stderr, "\t-h\tShow this message.\n");
fprintf(stderr, "\t-n N\tThe number of particles to generate. (default: 50000)\n");
@ -26,71 +23,63 @@ int parser(size_t *N, size_t *n, double *p_max, char argc, char **argv, size_t *
fprintf(stderr, "\t-p PMAX\tThe maximum value of momentum. (default: 10)\n");
fprintf(stderr, "\t-o\tPrint histogram to stdout.\n");
return 0;
}
}
return 1;
}
return 1;
}
int main(int argc, char **argv)
{
int main(int argc, char **argv) {
// Set default options.
//
size_t N = 50000;
size_t n = 50;
double p_max = 10;
size_t go = 0;
// Get eventual CLI arguments.
//
int res = parser(&N, &n, &p_max, argc, argv, &go);
if (go == 0 && res == 1)
{
printf("\nGenerating histogram with:\n"
"%ld points\n"
"%ld bins\n"
"p_max = %.3f\n\n", N, n, p_max);
}
else if (res == 0) return EXIT_FAILURE;
// printf("step: \t%.5f\n", step);
if (go == 0 && res == 1) {
printf("Generating histogram with:\n"
"%ld points\n"
"%ld bins\n"
"p_max = %.3f\n\n", N, n, p_max);
}
else if (res == 0)
return EXIT_FAILURE;
// Initialize an RNG.
//
gsl_rng_env_setup();
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);
// Generate the angle θ uniformly distributed on a sphere using the
// inverse transform:
//
// θ = acos(1 - 2X)
//
// where X is a random uniform variable in [0,1), and the module p of
// the vector:
//
// p² = p_v² + p_h²
//
// uniformly distributed between 0 and p_max. The two components are
// then computed as:
//
// p_v = p⋅cos(θ)
// p_h = p⋅sin(θ)
//
// The histogram is updated this way.
// The j-th bin where p_h goes in is given by:
//
// step = p_max / n
// j = floor(p_h / step)
//
// Thus an histogram was created and a structure containing the number of
// entries in each bin and the sum of |p_v| in each of them is created and
// filled while generating the events (struct bin).
//
/* Generate the angle θ uniformly distributed on a sphere using the
* inverse transform:
*
* θ = acos(1 - 2X)
*
* where X is a random uniform variable in [0,1), and the module p of
* the vector:
*
* p² = p_v² + p_h²
*
* uniformly distributed between 0 and p_max. The two components are
* then computed as:
*
* p_v = pcos(θ)
* p_h = psin(θ)
*
* The histogram is updated this way.
* The j-th bin where p_h goes in is given by:
*
* step = p_max / n
* j = floor(p_h / step)
*
* Thus an histogram was created and a structure containing the number of
* entries in each bin and the sum of |p_v| in each of them is created and
* filled while generating the events (struct bin).
*/
struct bin *histo = calloc(n, sizeof(struct bin));
// Some useful variables.
//
double step = p_max / n;
struct bin *b;
double theta;
@ -99,46 +88,40 @@ int main(int argc, char **argv)
double p_h;
size_t j;
for (size_t i = 0; i < N; i++)
{
// Generate the event.
//
for (size_t i = 0; i < N; i++) {
// Generate the event
theta = acos(1 - 2*gsl_rng_uniform(r));
p = p_max * gsl_rng_uniform(r);
// Compute the components.
//
// Compute the components
p_v = p * cos(theta);
p_h = p * sin(theta);
// Update the histogram.
//
// Update the histogram
j = floor(p_h / step);
b = &histo[j];
b -> amo++;
b -> sum += fabs(p_v);
}
}
// Compute the mean value of each bin and print it to stodut
// together with other useful things to make the histogram.
//
if (go == 1)
{
/* Compute the mean value of each bin and print it to stodut
* together with other useful things to make the histogram.
*/
if (go == 1) {
printf("bins: \t%ld\n", n);
printf("step: \t%.5f\n", step);
}
for (size_t i = 0; i < n; i++)
{
}
for (size_t i = 0; i < n; i++) {
histo[i].sum = histo[i].sum / histo[i].amo; // Average P_v
if (go == 1) printf("\n%.5f", histo[i].sum);
};
};
// Compare the histigram with the expected function:
//
// x * log(p_max/x)/arctan(sqrt(p_max^2/x^2 - 1))
//
// using the χ² test.
//
/* Compare the histigram with the expected function:
*
* x * log(p_max/x)/arctan(sqrt(p_max^2/x^2 - 1))
*
* using the χ² test.
*/
struct parameters params;
params.histo = histo;
params.n = n;
@ -151,8 +134,7 @@ int main(int argc, char **argv)
double min_p = p_max - 5;
double max_p = p_max + 5;
// Initialize minimization.
//
// Initialize minimization
double x = p_max;
int max_iter = 100;
double prec = 1e-7;
@ -161,71 +143,69 @@ int main(int argc, char **argv)
gsl_min_fminimizer *s = gsl_min_fminimizer_alloc(T);
gsl_min_fminimizer_set(s, &func, x, min_p, max_p);
// Minimization.
//
for (int iter = 0; status == GSL_CONTINUE && iter < max_iter; iter++)
{
// Minimization
for (int iter = 0; status == GSL_CONTINUE && iter < max_iter; iter++) {
status = gsl_min_fminimizer_iterate(s);
x = gsl_min_fminimizer_x_minimum(s);
min_p = gsl_min_fminimizer_x_lower(s);
max_p = gsl_min_fminimizer_x_upper(s);
status = gsl_min_test_interval(min_p, max_p, 0, prec);
}
}
double result = x;
double res_chi = chi2(result, &params);
if (go == 0)
{
if (go == 0) {
printf("Results:\n");
printf("χ² = %.3f\n", res_chi);
printf("p_max = %.3f\n", result);
}
}
// Compute the second derivative of χ² in its minimum for the result error.
//
// p_max = α
//
// (Ei - Oi)²
// χ² = Σi ----------
// Ei
//
// / Oi² \
// ∂αχ² = Σi | 1 - --- | ∂αE
// \ Ei² /
//
// / Oi² / Oi² \ \
// ∂²αχ² = Σi | (∂αE)² 2 --- + ∂²αE | 1 - --- | |
// \ Ei³ \ Ei² / /
//
/* Compute the second derivative of χ² in its minimum for the result error.
*
* p_max = α
* 2
* (Eᵢ - Oᵢ)
* χ² = Σi
* Eᵢ
*
* 2
* Oᵢ
* αχ² = Σi Eᵢ1 - αE
* 2
* Eᵢ
*
* 2 2
* Oᵢ Oᵢ
* ²αχ² = Σi (αE)²2 + ²αE 1 -
* 2 2
* Eᵢ Eᵢ
*/
double expecto, A, B;
double error = 0;
for (size_t i = 0; i < n; i++)
{
for (size_t i = 0; i < n; i++) {
x = (i + 0.5) * step;
expecto = expected(x, result);
A = 2 * pow(exp1d(x, result) * histo[i].sum / expecto, 2);
B = exp2d(x, result) * (1 - pow((histo[i].sum / expecto), 2));
error = error + A + B;
};
};
error = 1/error;
if (go == 0) printf("ΔP_max = %.3f\n", error);
if (go == 0)
printf("ΔP_max = %.3f\n", error);
// Check compatibility
//
double t = fabs(result - p_max)/error;
double alpha = 1 - erf(t/sqrt(2));
if (go == 0)
{
if (go == 0) {
printf("\nCompatibility:\n");
printf("t = %.3f\n", t);
printf("α = %.3f\n\n", alpha);
}
}
// Free memory.
//
// Free memory
gsl_min_fminimizer_free(s);
gsl_rng_free(r);
free(histo);
return EXIT_SUCCESS;
}
}