sections: rite sections 2 and 4
This commit is contained in:
parent
40d4901740
commit
1814c1c6d3
@ -1,7 +1,7 @@
|
|||||||
# Landau PDF
|
# Landau PDF
|
||||||
|
|
||||||
|
|
||||||
## Pathological probability distribution
|
## A pathological distribution
|
||||||
|
|
||||||
Because of its fat tail:
|
Because of its fat tail:
|
||||||
|
|
||||||
@ -10,23 +10,48 @@ Because of its fat tail:
|
|||||||
V[x] &\longrightarrow + \infty
|
V[x] &\longrightarrow + \infty
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
. . .
|
||||||
|
|
||||||
No closed form for parameters.
|
No closed form for parameters.
|
||||||
|
|
||||||
|
|
||||||
## Landau median
|
## Landau median
|
||||||
|
|
||||||
The median of a PDF is defined as:
|
The median of a PDF is defined as:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
Q_L(x) = \frac{1}{2}
|
Q_L(m) = \frac{1}{2}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
. . .
|
||||||
|
|
||||||
- CDF computed by numerical integration,
|
- CDF computed by numerical integration,
|
||||||
- QDF computed by numerical root-finding (Brent)
|
- QDF computed by numerical root-finding (Brent)
|
||||||
|
|
||||||
hence:
|
|
||||||
|
|
||||||
$$
|
$$
|
||||||
m_L = 1.3557804...
|
m_L = 1.3557804...
|
||||||
$$
|
$$
|
||||||
|
|
||||||
o
|
|
||||||
|
## Landau mode
|
||||||
|
|
||||||
|
- Maxmimum $\quad \Longrightarrow \quad \partial_x M(\mu) = 0$,
|
||||||
|
- Computed by numerical minimization (Brent)
|
||||||
|
|
||||||
|
$$
|
||||||
|
\mu_L = − 0.22278...
|
||||||
|
$$
|
||||||
|
|
||||||
|
|
||||||
|
## Landau FWHM
|
||||||
|
|
||||||
|
$$
|
||||||
|
\text{FWHM} = x_+ - x_- \with L(x_{\pm})
|
||||||
|
= \frac{L_{\text{max}}}{2} = \frac{L(\mu_L)}{2}
|
||||||
|
$$
|
||||||
|
|
||||||
|
- Computed numerically (Brent)
|
||||||
|
|
||||||
|
$$
|
||||||
|
\text{FWHM}_L = 4.018645...
|
||||||
|
$$
|
||||||
|
@ -1,8 +1,9 @@
|
|||||||
# Data sample
|
# Data sample
|
||||||
|
|
||||||
## Data sample
|
|
||||||
|
|
||||||
The $M(x)$ most similar to $L(x)$ is found by imposing:
|
## PDF parameters
|
||||||
|
|
||||||
|
A $M(x)$ similar to $L(x)$ can be found by imposing:
|
||||||
|
|
||||||
- equal mode
|
- equal mode
|
||||||
$$
|
$$
|
||||||
@ -19,3 +20,16 @@ $$
|
|||||||
$$
|
$$
|
||||||
\implies \sigma_M \approx 1.1191486
|
\implies \sigma_M \approx 1.1191486
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
|
||||||
|
## PDF parameters
|
||||||
|
|
||||||
|
:::: {.columns}
|
||||||
|
::: {.column width=50%}
|
||||||
|
![](images/both-pdf-bef.pdf)
|
||||||
|
:::
|
||||||
|
|
||||||
|
::: {.column width=50%}
|
||||||
|
![](images/both-pdf-aft.pdf)
|
||||||
|
:::
|
||||||
|
::::
|
||||||
|
Loading…
Reference in New Issue
Block a user