diff --git a/slides/sections/2.md b/slides/sections/2.md index 566dd48..cab1190 100644 --- a/slides/sections/2.md +++ b/slides/sections/2.md @@ -1,7 +1,7 @@ # Landau PDF -## Pathological probability distribution +## A pathological distribution Because of its fat tail: @@ -10,23 +10,48 @@ Because of its fat tail: V[x] &\longrightarrow + \infty \end{align*} +. . . + No closed form for parameters. + ## Landau median The median of a PDF is defined as: $$ - Q_L(x) = \frac{1}{2} + Q_L(m) = \frac{1}{2} $$ +. . . + - CDF computed by numerical integration, - QDF computed by numerical root-finding (Brent) -hence: - $$ m_L = 1.3557804... $$ -o + +## Landau mode + +- Maxmimum $\quad \Longrightarrow \quad \partial_x M(\mu) = 0$, +- Computed by numerical minimization (Brent) + +$$ + \mu_L = − 0.22278... +$$ + + +## Landau FWHM + +$$ + \text{FWHM} = x_+ - x_- \with L(x_{\pm}) + = \frac{L_{\text{max}}}{2} = \frac{L(\mu_L)}{2} +$$ + +- Computed numerically (Brent) + +$$ + \text{FWHM}_L = 4.018645... +$$ diff --git a/slides/sections/4.md b/slides/sections/4.md index ae9ffed..599a309 100644 --- a/slides/sections/4.md +++ b/slides/sections/4.md @@ -1,8 +1,9 @@ # Data sample -## Data sample -The $M(x)$ most similar to $L(x)$ is found by imposing: +## PDF parameters + +A $M(x)$ similar to $L(x)$ can be found by imposing: - equal mode $$ @@ -19,3 +20,16 @@ $$ $$ \implies \sigma_M \approx 1.1191486 $$ + + +## PDF parameters + +:::: {.columns} +::: {.column width=50%} + ![](images/both-pdf-bef.pdf) +::: + +::: {.column width=50%} + ![](images/both-pdf-aft.pdf) +::: +::::