ex-1: split into several files
This commit is contained in:
parent
3cd011ed5b
commit
0ee7f9adb3
95
ex-1/landau.c
Normal file
95
ex-1/landau.c
Normal file
@ -0,0 +1,95 @@
|
||||
/* This file contains functions to
|
||||
* compute the Landau distribution
|
||||
* PDF, CDF and QDF functions.
|
||||
*/
|
||||
|
||||
#include <gsl/gsl_roots.h>
|
||||
#include <gsl/gsl_randist.h>
|
||||
#include <gsl/gsl_integration.h>
|
||||
|
||||
|
||||
/* This is a wrapper needed by `landau_cdf` because
|
||||
* the numerical integration expects a function
|
||||
* with parameters.
|
||||
*/
|
||||
double landau_pdf(double x, void* params) {
|
||||
return gsl_ran_landau_pdf(x);
|
||||
}
|
||||
|
||||
|
||||
/* The cumulative function of the Landau distribution
|
||||
* calculated by numerical integration.
|
||||
*/
|
||||
double landau_cdf(double x, void* params) {
|
||||
// create the integrand
|
||||
gsl_function pdf;
|
||||
pdf.function = &landau_pdf;
|
||||
pdf.params = NULL;
|
||||
|
||||
// set up the integration
|
||||
double res, err;
|
||||
size_t iter = 500;
|
||||
gsl_integration_workspace* w =
|
||||
gsl_integration_workspace_alloc(iter);
|
||||
|
||||
// clip values too small
|
||||
if (x < -200) x = -200;
|
||||
|
||||
// We integrate the pdf in [x, +∞) instead
|
||||
// of (-∞, x] to avoid a singularity and
|
||||
// then return 1 - P.
|
||||
gsl_integration_qagiu(
|
||||
&pdf, // integrand
|
||||
x, // lower bound
|
||||
1e-10, 1e-6, // abs and rel error
|
||||
iter, // max iteration
|
||||
w, // "workspace"
|
||||
&res, &err); // result, abs error
|
||||
|
||||
// free the memory
|
||||
gsl_integration_workspace_free(w);
|
||||
|
||||
return 1 - res;
|
||||
}
|
||||
|
||||
|
||||
/* Another wrapper: this time it is needed by
|
||||
* `landau_qdf` to solve the equation:
|
||||
* `landau_cdf(x) = p0` for x
|
||||
*/
|
||||
double landau_cdf_root(double x, void* params) {
|
||||
double p0 = *(double*)params;
|
||||
return p0 - landau_cdf(x, NULL);
|
||||
}
|
||||
|
||||
|
||||
/* The quantile function (inverse CDF) of the Landau
|
||||
* distribution calculated by numerical root method.
|
||||
*/
|
||||
double landau_qdf(double p0) {
|
||||
// create function
|
||||
gsl_function cdf;
|
||||
cdf.function = &landau_cdf_root;
|
||||
cdf.params = &p0;
|
||||
|
||||
// use the Brent method
|
||||
gsl_root_fsolver* s =
|
||||
gsl_root_fsolver_alloc(gsl_root_fsolver_brent);
|
||||
|
||||
// search interval
|
||||
double low = -1000, // lower value
|
||||
upp = 100000; // upper value
|
||||
gsl_root_fsolver_set(s, &cdf, low, upp);
|
||||
|
||||
// iterative search
|
||||
size_t iter = 1000; // max iteration
|
||||
int stat = GSL_CONTINUE;
|
||||
for (size_t i=0; stat==GSL_CONTINUE && i<iter; i++) {
|
||||
stat = gsl_root_fsolver_iterate(s);
|
||||
low = gsl_root_fsolver_x_lower(s);
|
||||
upp = gsl_root_fsolver_x_upper(s);
|
||||
stat = gsl_root_test_interval(low, upp, 0, 0.01);
|
||||
}
|
||||
|
||||
return gsl_root_fsolver_root(s);
|
||||
}
|
24
ex-1/landau.h
Normal file
24
ex-1/landau.h
Normal file
@ -0,0 +1,24 @@
|
||||
/* This file contains functions to
|
||||
* compute the Landau distribution
|
||||
* PDF, CDF and QDF functions.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
/* This is a wrapper needed by `landau_cdf` because
|
||||
* the numerical integration expects a function
|
||||
* with parameters.
|
||||
*/
|
||||
double landau_pdf(double x, void* params);
|
||||
|
||||
|
||||
/* The cumulative function of the Landau distribution
|
||||
* calculated by numerical integration.
|
||||
*/
|
||||
double landau_cdf(double x, void* params);
|
||||
|
||||
|
||||
/* The quantile function (inverse CDF) of the Landau
|
||||
* distribution calculated by numerical root method.
|
||||
*/
|
||||
double landau_qdf(double p0);
|
283
ex-1/main.c
283
ex-1/main.c
@ -1,11 +1,11 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <gsl/gsl_min.h>
|
||||
#include <gsl/gsl_sum.h>
|
||||
#include <gsl/gsl_roots.h>
|
||||
#include <math.h>
|
||||
#include <gsl/gsl_randist.h>
|
||||
#include <gsl/gsl_histogram.h>
|
||||
#include <gsl/gsl_integration.h>
|
||||
|
||||
#include "landau.h"
|
||||
#include "tests.h"
|
||||
|
||||
|
||||
/* Function that compare doubles for sorting:
|
||||
@ -20,233 +20,6 @@ int cmp_double (const void *xp, const void *yp) {
|
||||
}
|
||||
|
||||
|
||||
/* This is a wrapper needed by `landau_cdf` because
|
||||
* the numerical integration expects a function
|
||||
* with parameters.
|
||||
*/
|
||||
double landau_pdf(double x, void* params) {
|
||||
return gsl_ran_landau_pdf(x);
|
||||
}
|
||||
|
||||
|
||||
/* The cumulative function of the Landau distribution
|
||||
* calculated by numerical integration.
|
||||
*/
|
||||
double landau_cdf(double x, void* params) {
|
||||
// create the integrand
|
||||
gsl_function pdf;
|
||||
pdf.function = &landau_pdf;
|
||||
pdf.params = NULL;
|
||||
|
||||
// set up the integration
|
||||
double res, err;
|
||||
size_t iter = 500;
|
||||
gsl_integration_workspace* w =
|
||||
gsl_integration_workspace_alloc(iter);
|
||||
|
||||
// clip values too small
|
||||
if (x < -200) x = -200;
|
||||
|
||||
// We integrate the pdf in [x, +∞) instead
|
||||
// of (-∞, x] to avoid a singularity and
|
||||
// then return 1 - P.
|
||||
gsl_integration_qagiu(
|
||||
&pdf, // integrand
|
||||
x, // lower bound
|
||||
1e-10, 1e-6, // abs and rel error
|
||||
iter, // max iteration
|
||||
w, // "workspace"
|
||||
&res, &err); // result, abs error
|
||||
|
||||
// free the memory
|
||||
gsl_integration_workspace_free(w);
|
||||
|
||||
return 1 - res;
|
||||
}
|
||||
|
||||
|
||||
/* Another wrapper: this time it is needed by
|
||||
* `landau_qdf` to solve the equation:
|
||||
* `landau_cdf(x) = p0` for x
|
||||
*/
|
||||
double landau_cdf_root(double x, void* params) {
|
||||
double p0 = *(double*)params;
|
||||
return p0 - landau_cdf(x, NULL);
|
||||
}
|
||||
|
||||
|
||||
/* The quantile function (inverse CDF) of the Landau
|
||||
* distribution calculated by numerical root method.
|
||||
*/
|
||||
double landau_qdf(double p0) {
|
||||
// create function
|
||||
gsl_function cdf;
|
||||
cdf.function = &landau_cdf_root;
|
||||
cdf.params = &p0;
|
||||
|
||||
// use the Brent method
|
||||
gsl_root_fsolver* s =
|
||||
gsl_root_fsolver_alloc(gsl_root_fsolver_brent);
|
||||
|
||||
// search interval
|
||||
double low = -1000, // lower value
|
||||
upp = 100000; // upper value
|
||||
gsl_root_fsolver_set(s, &cdf, low, upp);
|
||||
|
||||
// iterative search
|
||||
size_t iter = 1000; // max iteration
|
||||
int stat = GSL_CONTINUE;
|
||||
for (size_t i=0; stat==GSL_CONTINUE && i<iter; i++) {
|
||||
stat = gsl_root_fsolver_iterate(s);
|
||||
low = gsl_root_fsolver_x_lower(s);
|
||||
upp = gsl_root_fsolver_x_upper(s);
|
||||
stat = gsl_root_test_interval(low, upp, 0, 0.01);
|
||||
}
|
||||
|
||||
return gsl_root_fsolver_root(s);
|
||||
}
|
||||
|
||||
|
||||
/* Kolmogorov distribution CDF
|
||||
* for sample size n and statistic D
|
||||
*/
|
||||
double kolmogorov_cdf(double D, int n) {
|
||||
double x = sqrt(n) * D;
|
||||
|
||||
// trick to reduce estimate error
|
||||
x += 1/(6 * sqrt(n)) + (x - 1)/(4 * n);
|
||||
|
||||
// calculate the first n_terms of the series
|
||||
// Σ_k=1 exp(-(2k - 1)²π²/8x²)
|
||||
size_t n_terms = 30;
|
||||
double *terms = calloc(n_terms, sizeof(double));
|
||||
for (size_t k=1; k<n_terms; k++) {
|
||||
terms[k] = exp(-pow((2*(double)k - 1)*M_PI/x, 2) / 8);
|
||||
}
|
||||
|
||||
// do a transform to accelerate the convergence
|
||||
double sum, abserr;
|
||||
gsl_sum_levin_utrunc_workspace* s = gsl_sum_levin_utrunc_alloc(n_terms);
|
||||
gsl_sum_levin_utrunc_accel(terms, n_terms, s, &sum, &abserr);
|
||||
|
||||
fprintf(stderr, "\n# Kolmogorov CDF\n");
|
||||
fprintf(stderr, "accel sum: %f\n", sum);
|
||||
fprintf(stderr, "plain sum: %f\n", s->sum_plain);
|
||||
fprintf(stderr, "err: %f\n", abserr);
|
||||
|
||||
gsl_sum_levin_utrunc_free(s);
|
||||
free(terms);
|
||||
|
||||
return sqrt(2*M_PI)/x * sum;
|
||||
}
|
||||
|
||||
|
||||
/* This is a wrapper needed by `numeric_mode` because
|
||||
* the minimization expects a function to be minimized and not
|
||||
* maximized.
|
||||
*/
|
||||
double neg_landau_pdf(double x, void* params) {
|
||||
return (-1) * gsl_ran_landau_pdf(x);
|
||||
}
|
||||
|
||||
|
||||
/* Compute numerically the mode of the Landau distribution.
|
||||
*/
|
||||
double numeric_mode (double min, double max) {
|
||||
// create funtion
|
||||
gsl_function pdf;
|
||||
pdf.function = &neg_landau_pdf;
|
||||
pdf.params = NULL;
|
||||
|
||||
// initialize minimization
|
||||
double guess = 0;
|
||||
int iter = 0;
|
||||
int max_iter = 100;
|
||||
double prec = 1e-7;
|
||||
int status;
|
||||
const gsl_min_fminimizer_type * T = gsl_min_fminimizer_goldensection;
|
||||
gsl_min_fminimizer * s = gsl_min_fminimizer_alloc (T);
|
||||
gsl_min_fminimizer_set(s, &pdf, guess, min, max);
|
||||
|
||||
// minimization
|
||||
do {
|
||||
iter++;
|
||||
status = gsl_min_fminimizer_iterate (s);
|
||||
guess = gsl_min_fminimizer_x_minimum (s);
|
||||
min = gsl_min_fminimizer_x_lower (s);
|
||||
max = gsl_min_fminimizer_x_upper (s);
|
||||
status = gsl_min_test_interval (min, max, prec, prec);
|
||||
|
||||
} while (status == GSL_CONTINUE && iter < max_iter);
|
||||
|
||||
// Free memory
|
||||
gsl_min_fminimizer_free (s);
|
||||
return guess;
|
||||
}
|
||||
|
||||
|
||||
/* This is the function to be minimized in `numeric_FWHM`.
|
||||
*/
|
||||
double abs_landau_pdf(double x, void* params_) {
|
||||
double* params = ((double *) params_);
|
||||
return fabs(gsl_ran_landau_pdf(x) - params[0]);
|
||||
}
|
||||
|
||||
|
||||
/* Compute numerically the FWHM of the Landau distribution.
|
||||
*/
|
||||
double numeric_fwhm (double min_lim, double mode, double max_lim) {
|
||||
// create funtion
|
||||
gsl_function pdf;
|
||||
pdf.function = &abs_landau_pdf;
|
||||
double params [1];
|
||||
params[0]= gsl_ran_landau_pdf(mode)/2;
|
||||
pdf.params = params;
|
||||
|
||||
// initialize minimization for x₋
|
||||
double guess = mode - 1;
|
||||
double min, max;
|
||||
int iter = 0;
|
||||
int max_iter = 100;
|
||||
double prec = 1e-7;
|
||||
int status;
|
||||
const gsl_min_fminimizer_type * T = gsl_min_fminimizer_goldensection;
|
||||
gsl_min_fminimizer * s = gsl_min_fminimizer_alloc (T);
|
||||
gsl_min_fminimizer_set(s, &pdf, guess, min_lim, mode);
|
||||
|
||||
// minimization
|
||||
do {
|
||||
iter++;
|
||||
status = gsl_min_fminimizer_iterate (s);
|
||||
guess = gsl_min_fminimizer_x_minimum (s);
|
||||
min = gsl_min_fminimizer_x_lower (s);
|
||||
max = gsl_min_fminimizer_x_upper (s);
|
||||
status = gsl_min_test_interval (min, max, prec, prec);
|
||||
} while (status == GSL_CONTINUE && iter < max_iter);
|
||||
double x_low = guess;
|
||||
|
||||
// initialize minimization for x₊
|
||||
guess = mode + 1;
|
||||
gsl_min_fminimizer_set(s, &pdf, guess, mode, max_lim);
|
||||
|
||||
// minimization
|
||||
do {
|
||||
iter++;
|
||||
status = gsl_min_fminimizer_iterate (s);
|
||||
guess = gsl_min_fminimizer_x_minimum (s);
|
||||
min = gsl_min_fminimizer_x_lower (s);
|
||||
max = gsl_min_fminimizer_x_upper (s);
|
||||
status = gsl_min_test_interval (min, max, prec, prec);
|
||||
|
||||
} while (status == GSL_CONTINUE && iter < max_iter);
|
||||
double x_upp = guess;
|
||||
|
||||
// Free memory
|
||||
gsl_min_fminimizer_free (s);
|
||||
return x_upp - x_low;
|
||||
}
|
||||
|
||||
|
||||
/* Here we generate random numbers in a uniform
|
||||
* range and by using the quantile we map them
|
||||
* to a Landau distribution. Then we generate an
|
||||
@ -266,20 +39,31 @@ int main(int argc, char** argv) {
|
||||
gsl_histogram* hist = gsl_histogram_alloc(bins);
|
||||
gsl_histogram_set_ranges_uniform(hist, min, max);
|
||||
|
||||
/* sample points from the Landau distribution
|
||||
* and fill the histogram
|
||||
|
||||
/* Sample generation
|
||||
*
|
||||
* Sample points from the Landau
|
||||
* distribution and fill the histogram.
|
||||
*/
|
||||
fprintf(stderr, "# Sampling\n");
|
||||
fprintf(stderr, "generating %ld points... ", samples);
|
||||
double x;
|
||||
for(size_t i=0; i<samples; i++) {
|
||||
x = gsl_ran_landau(r);
|
||||
sample[i] = x;
|
||||
gsl_histogram_increment(hist, x);
|
||||
}
|
||||
fprintf(stderr, "done\n");
|
||||
|
||||
// sort the sample
|
||||
qsort(sample, samples, sizeof(double), &cmp_double);
|
||||
|
||||
// calculate Kolmogorov-Smirnov D
|
||||
|
||||
/* Kolmogorov-Smirnov test
|
||||
*
|
||||
* Compute the D statistic and its
|
||||
* associated probability.
|
||||
*/
|
||||
double D = 0;
|
||||
double d;
|
||||
for(size_t i=0; i<samples; i++) {
|
||||
@ -287,16 +71,19 @@ int main(int argc, char** argv) {
|
||||
if (d > D)
|
||||
D = d;
|
||||
}
|
||||
|
||||
// Kolmogorov-Smirnov test
|
||||
fprintf(stderr, "\n\n# Kolmogorov-Smirnov test\n");
|
||||
double beta = kolmogorov_cdf(D, samples);
|
||||
fprintf(stderr, "\n# K-S test results\n");
|
||||
|
||||
// print the results
|
||||
fprintf(stderr, "\n## Results\n");
|
||||
fprintf(stderr, "D: %f\n", D);
|
||||
fprintf(stderr, "α: %g\n", 1 - beta);
|
||||
|
||||
// Mode comparison
|
||||
//
|
||||
// find the bin with the maximum number of events
|
||||
|
||||
/* Mode comparison
|
||||
*
|
||||
* Find the bin with the maximum number of events
|
||||
*/
|
||||
double mode_o, maxbin = 0;
|
||||
double f_mode_o = 0;
|
||||
double m1, m2 = 0;
|
||||
@ -308,19 +95,22 @@ int main(int argc, char** argv) {
|
||||
f_mode_o = hist->bin[i];
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "\n\n# Mode comparison\n");
|
||||
fprintf(stderr, "\nstep: %.2f\n ", (max - min)/bins);
|
||||
f_mode_o = f_mode_o/samples;
|
||||
mode_o = min + (maxbin + 0.5)*(max - min)/bins;
|
||||
|
||||
// print the results
|
||||
double mode_e = numeric_mode(min, max);
|
||||
fprintf(stderr, "\n# Numeric mode\n");
|
||||
fprintf(stderr, "\n## Results\n");
|
||||
fprintf(stderr, "expected mode: %.7f\n", mode_e);
|
||||
fprintf(stderr, "observed mode: %.3f\n", mode_o);
|
||||
|
||||
// FWHM comparison
|
||||
//
|
||||
// find the bins x₋ and x₊
|
||||
|
||||
/* FWHM comparison
|
||||
*
|
||||
* Find the bins x₋ and x₊.
|
||||
*/
|
||||
double half = f_mode_o*samples/2;
|
||||
m2 = samples;
|
||||
double x_low = 0;
|
||||
@ -348,8 +138,9 @@ int main(int argc, char** argv) {
|
||||
double fwhm_o = x_upp - x_low;
|
||||
|
||||
// print the results
|
||||
fprintf(stderr, "\n# Numeric FWHM\n");
|
||||
double fwhm_e = numeric_fwhm(min, mode_e, max);
|
||||
fprintf(stderr, "\n\n# FWHM comparison\n");
|
||||
double fwhm_e = numeric_fwhm(min, max, mode_e);
|
||||
fprintf(stderr, "\n# Results\n");
|
||||
fprintf(stderr, "expected FWHM: %.7f\n", fwhm_e);
|
||||
fprintf(stderr, "observed FWHM: %.3f\n", fwhm_o);
|
||||
|
||||
|
158
ex-1/tests.c
Normal file
158
ex-1/tests.c
Normal file
@ -0,0 +1,158 @@
|
||||
/* This file contains functions to perform
|
||||
* statistical tests on the points sampled
|
||||
* from a Landau distribution.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <gsl/gsl_randist.h>
|
||||
#include <gsl/gsl_min.h>
|
||||
#include <gsl/gsl_sum.h>
|
||||
|
||||
#include "landau.h"
|
||||
|
||||
|
||||
/* Kolmogorov distribution CDF
|
||||
* for sample size n and statistic D
|
||||
*/
|
||||
double kolmogorov_cdf(double D, int n) {
|
||||
double x = sqrt(n) * D;
|
||||
|
||||
// trick to reduce estimate error
|
||||
x += 1/(6 * sqrt(n)) + (x - 1)/(4 * n);
|
||||
|
||||
// calculate the first n_terms of the series
|
||||
// Σ_k=1 exp(-(2k - 1)²π²/8x²)
|
||||
size_t n_terms = 30;
|
||||
double *terms = calloc(n_terms, sizeof(double));
|
||||
for (size_t k=0; k<n_terms; k++) {
|
||||
terms[k] = exp(-pow((2*(double)(k + 1) - 1)*M_PI/x, 2) / 8);
|
||||
}
|
||||
|
||||
// do a transform to accelerate the convergence
|
||||
double sum, abserr;
|
||||
gsl_sum_levin_utrunc_workspace* s = gsl_sum_levin_utrunc_alloc(n_terms);
|
||||
gsl_sum_levin_utrunc_accel(terms, n_terms, s, &sum, &abserr);
|
||||
|
||||
fprintf(stderr, "\n## Kolmogorov CDF\n");
|
||||
fprintf(stderr, "accel sum: %f\n", sum);
|
||||
fprintf(stderr, "plain sum: %f\n", s->sum_plain);
|
||||
fprintf(stderr, "err: %f\n", abserr);
|
||||
|
||||
gsl_sum_levin_utrunc_free(s);
|
||||
free(terms);
|
||||
|
||||
return sqrt(2*M_PI)/x * sum;
|
||||
}
|
||||
|
||||
|
||||
/* This is a wrapper needed by `numeric_mode` because
|
||||
* the minimization expects a function to be minimized and not
|
||||
* maximized.
|
||||
*/
|
||||
double neg_landau_pdf(double x, void* params) {
|
||||
return (-1) * gsl_ran_landau_pdf(x);
|
||||
}
|
||||
|
||||
|
||||
/* Numerically computes the mode of a Landau
|
||||
* distribution by maximising the derivative.
|
||||
* The min,max parameters are the initial search
|
||||
* interval for the optimisation.
|
||||
*/
|
||||
double numeric_mode(double min, double max) {
|
||||
// create funtion
|
||||
gsl_function pdf;
|
||||
pdf.function = &neg_landau_pdf;
|
||||
pdf.params = NULL;
|
||||
|
||||
// initialize minimization
|
||||
double guess = 0;
|
||||
int iter = 0;
|
||||
int max_iter = 100;
|
||||
double prec = 1e-7;
|
||||
int status;
|
||||
const gsl_min_fminimizer_type * T = gsl_min_fminimizer_goldensection;
|
||||
gsl_min_fminimizer * s = gsl_min_fminimizer_alloc(T);
|
||||
gsl_min_fminimizer_set(s, &pdf, guess, min, max);
|
||||
|
||||
// minimization
|
||||
do {
|
||||
iter++;
|
||||
status = gsl_min_fminimizer_iterate(s);
|
||||
guess = gsl_min_fminimizer_x_minimum(s);
|
||||
min = gsl_min_fminimizer_x_lower(s);
|
||||
max = gsl_min_fminimizer_x_upper(s);
|
||||
status = gsl_min_test_interval(min, max, prec, prec);
|
||||
|
||||
} while (status == GSL_CONTINUE && iter < max_iter);
|
||||
|
||||
// Free memory
|
||||
gsl_min_fminimizer_free(s);
|
||||
return guess;
|
||||
}
|
||||
|
||||
|
||||
/* This is the function to be minimized in `numeric_FWHM`.
|
||||
*/
|
||||
double abs_landau_pdf(double x, void* params_) {
|
||||
double* params = ((double *) params_);
|
||||
return fabs(gsl_ran_landau_pdf(x) - params[0]);
|
||||
}
|
||||
|
||||
|
||||
/* Numerically computes the FWHM of Landau
|
||||
* distribution by maximising the derivative.
|
||||
* The `min,max` parameters are the initial search
|
||||
* interval for the optimisation. `mode` can be
|
||||
* computer with `numeric_mode(min, max)`.
|
||||
*/
|
||||
double numeric_fwhm(double min, double max, double mode) {
|
||||
// create funtion
|
||||
gsl_function pdf;
|
||||
pdf.function = &abs_landau_pdf;
|
||||
double params [1];
|
||||
params[0]= gsl_ran_landau_pdf(mode)/2;
|
||||
pdf.params = params;
|
||||
|
||||
// initialize minimization for x₋
|
||||
double guess = mode - 1;
|
||||
double fmin, fmax;
|
||||
int iter = 0;
|
||||
int max_iter = 100;
|
||||
double prec = 1e-7;
|
||||
int status;
|
||||
const gsl_min_fminimizer_type * T = gsl_min_fminimizer_goldensection;
|
||||
gsl_min_fminimizer * s = gsl_min_fminimizer_alloc(T);
|
||||
gsl_min_fminimizer_set(s, &pdf, guess, min, mode);
|
||||
|
||||
// minimization
|
||||
do {
|
||||
iter++;
|
||||
status = gsl_min_fminimizer_iterate(s);
|
||||
guess = gsl_min_fminimizer_x_minimum(s);
|
||||
fmin = gsl_min_fminimizer_x_lower(s);
|
||||
fmax = gsl_min_fminimizer_x_upper(s);
|
||||
status = gsl_min_test_interval(fmin, fmax, prec, prec);
|
||||
} while (status == GSL_CONTINUE && iter < max_iter);
|
||||
double x_low = guess;
|
||||
|
||||
// initialize minimization for x₊
|
||||
guess = mode + 1;
|
||||
gsl_min_fminimizer_set(s, &pdf, guess, mode, max);
|
||||
|
||||
// minimization
|
||||
do {
|
||||
iter++;
|
||||
status = gsl_min_fminimizer_iterate(s);
|
||||
guess = gsl_min_fminimizer_x_minimum(s);
|
||||
fmin = gsl_min_fminimizer_x_lower(s);
|
||||
fmax = gsl_min_fminimizer_x_upper(s);
|
||||
status = gsl_min_test_interval(fmin, fmax, prec, prec);
|
||||
|
||||
} while (status == GSL_CONTINUE && iter < max_iter);
|
||||
double x_upp = guess;
|
||||
|
||||
// Free memory
|
||||
gsl_min_fminimizer_free(s);
|
||||
return x_upp - x_low;
|
||||
}
|
28
ex-1/tests.h
Normal file
28
ex-1/tests.h
Normal file
@ -0,0 +1,28 @@
|
||||
/* This file contains functions to perform
|
||||
* statistical tests on the points sampled
|
||||
* from a Landau distribution.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
/* Kolmogorov distribution CDF
|
||||
* for sample size n and statistic D
|
||||
*/
|
||||
double kolmogorov_cdf(double D, int n);
|
||||
|
||||
|
||||
/* Numerically computes the mode of a Landau
|
||||
* distribution by maximising the derivative.
|
||||
* The min,max parameters are the initial search
|
||||
* interval for the optimisation.
|
||||
*/
|
||||
double numeric_mode(double min, double max);
|
||||
|
||||
|
||||
/* Numerically computes the FWHM of Landau
|
||||
* distribution by maximising the derivative.
|
||||
* The `min,max` parameters are the initial search
|
||||
* interval for the optimisation. `mode` can be
|
||||
* computer with `numeric_mode(min, max)`.
|
||||
*/
|
||||
double numeric_fwhm(double min, double max, double mode);
|
Loading…
Reference in New Issue
Block a user