diff --git a/ex-1/landau.c b/ex-1/landau.c new file mode 100644 index 0000000..9f7b3d2 --- /dev/null +++ b/ex-1/landau.c @@ -0,0 +1,95 @@ +/* This file contains functions to + * compute the Landau distribution + * PDF, CDF and QDF functions. + */ + +#include +#include +#include + + +/* This is a wrapper needed by `landau_cdf` because + * the numerical integration expects a function + * with parameters. + */ +double landau_pdf(double x, void* params) { + return gsl_ran_landau_pdf(x); +} + + +/* The cumulative function of the Landau distribution + * calculated by numerical integration. + */ +double landau_cdf(double x, void* params) { + // create the integrand + gsl_function pdf; + pdf.function = &landau_pdf; + pdf.params = NULL; + + // set up the integration + double res, err; + size_t iter = 500; + gsl_integration_workspace* w = + gsl_integration_workspace_alloc(iter); + + // clip values too small + if (x < -200) x = -200; + + // We integrate the pdf in [x, +∞) instead + // of (-∞, x] to avoid a singularity and + // then return 1 - P. + gsl_integration_qagiu( + &pdf, // integrand + x, // lower bound + 1e-10, 1e-6, // abs and rel error + iter, // max iteration + w, // "workspace" + &res, &err); // result, abs error + + // free the memory + gsl_integration_workspace_free(w); + + return 1 - res; +} + + +/* Another wrapper: this time it is needed by + * `landau_qdf` to solve the equation: + * `landau_cdf(x) = p0` for x + */ +double landau_cdf_root(double x, void* params) { + double p0 = *(double*)params; + return p0 - landau_cdf(x, NULL); +} + + +/* The quantile function (inverse CDF) of the Landau + * distribution calculated by numerical root method. + */ +double landau_qdf(double p0) { + // create function + gsl_function cdf; + cdf.function = &landau_cdf_root; + cdf.params = &p0; + + // use the Brent method + gsl_root_fsolver* s = + gsl_root_fsolver_alloc(gsl_root_fsolver_brent); + + // search interval + double low = -1000, // lower value + upp = 100000; // upper value + gsl_root_fsolver_set(s, &cdf, low, upp); + + // iterative search + size_t iter = 1000; // max iteration + int stat = GSL_CONTINUE; + for (size_t i=0; stat==GSL_CONTINUE && i #include -#include -#include -#include +#include #include #include -#include + +#include "landau.h" +#include "tests.h" /* Function that compare doubles for sorting: @@ -20,233 +20,6 @@ int cmp_double (const void *xp, const void *yp) { } -/* This is a wrapper needed by `landau_cdf` because - * the numerical integration expects a function - * with parameters. - */ -double landau_pdf(double x, void* params) { - return gsl_ran_landau_pdf(x); -} - - -/* The cumulative function of the Landau distribution - * calculated by numerical integration. - */ -double landau_cdf(double x, void* params) { - // create the integrand - gsl_function pdf; - pdf.function = &landau_pdf; - pdf.params = NULL; - - // set up the integration - double res, err; - size_t iter = 500; - gsl_integration_workspace* w = - gsl_integration_workspace_alloc(iter); - - // clip values too small - if (x < -200) x = -200; - - // We integrate the pdf in [x, +∞) instead - // of (-∞, x] to avoid a singularity and - // then return 1 - P. - gsl_integration_qagiu( - &pdf, // integrand - x, // lower bound - 1e-10, 1e-6, // abs and rel error - iter, // max iteration - w, // "workspace" - &res, &err); // result, abs error - - // free the memory - gsl_integration_workspace_free(w); - - return 1 - res; -} - - -/* Another wrapper: this time it is needed by - * `landau_qdf` to solve the equation: - * `landau_cdf(x) = p0` for x - */ -double landau_cdf_root(double x, void* params) { - double p0 = *(double*)params; - return p0 - landau_cdf(x, NULL); -} - - -/* The quantile function (inverse CDF) of the Landau - * distribution calculated by numerical root method. - */ -double landau_qdf(double p0) { - // create function - gsl_function cdf; - cdf.function = &landau_cdf_root; - cdf.params = &p0; - - // use the Brent method - gsl_root_fsolver* s = - gsl_root_fsolver_alloc(gsl_root_fsolver_brent); - - // search interval - double low = -1000, // lower value - upp = 100000; // upper value - gsl_root_fsolver_set(s, &cdf, low, upp); - - // iterative search - size_t iter = 1000; // max iteration - int stat = GSL_CONTINUE; - for (size_t i=0; stat==GSL_CONTINUE && isum_plain); - fprintf(stderr, "err: %f\n", abserr); - - gsl_sum_levin_utrunc_free(s); - free(terms); - - return sqrt(2*M_PI)/x * sum; -} - - -/* This is a wrapper needed by `numeric_mode` because - * the minimization expects a function to be minimized and not - * maximized. - */ -double neg_landau_pdf(double x, void* params) { - return (-1) * gsl_ran_landau_pdf(x); -} - - -/* Compute numerically the mode of the Landau distribution. - */ -double numeric_mode (double min, double max) { - // create funtion - gsl_function pdf; - pdf.function = &neg_landau_pdf; - pdf.params = NULL; - - // initialize minimization - double guess = 0; - int iter = 0; - int max_iter = 100; - double prec = 1e-7; - int status; - const gsl_min_fminimizer_type * T = gsl_min_fminimizer_goldensection; - gsl_min_fminimizer * s = gsl_min_fminimizer_alloc (T); - gsl_min_fminimizer_set(s, &pdf, guess, min, max); - - // minimization - do { - iter++; - status = gsl_min_fminimizer_iterate (s); - guess = gsl_min_fminimizer_x_minimum (s); - min = gsl_min_fminimizer_x_lower (s); - max = gsl_min_fminimizer_x_upper (s); - status = gsl_min_test_interval (min, max, prec, prec); - - } while (status == GSL_CONTINUE && iter < max_iter); - - // Free memory - gsl_min_fminimizer_free (s); - return guess; -} - - -/* This is the function to be minimized in `numeric_FWHM`. - */ -double abs_landau_pdf(double x, void* params_) { - double* params = ((double *) params_); - return fabs(gsl_ran_landau_pdf(x) - params[0]); -} - - -/* Compute numerically the FWHM of the Landau distribution. - */ -double numeric_fwhm (double min_lim, double mode, double max_lim) { - // create funtion - gsl_function pdf; - pdf.function = &abs_landau_pdf; - double params [1]; - params[0]= gsl_ran_landau_pdf(mode)/2; - pdf.params = params; - - // initialize minimization for x₋ - double guess = mode - 1; - double min, max; - int iter = 0; - int max_iter = 100; - double prec = 1e-7; - int status; - const gsl_min_fminimizer_type * T = gsl_min_fminimizer_goldensection; - gsl_min_fminimizer * s = gsl_min_fminimizer_alloc (T); - gsl_min_fminimizer_set(s, &pdf, guess, min_lim, mode); - - // minimization - do { - iter++; - status = gsl_min_fminimizer_iterate (s); - guess = gsl_min_fminimizer_x_minimum (s); - min = gsl_min_fminimizer_x_lower (s); - max = gsl_min_fminimizer_x_upper (s); - status = gsl_min_test_interval (min, max, prec, prec); - } while (status == GSL_CONTINUE && iter < max_iter); - double x_low = guess; - - // initialize minimization for x₊ - guess = mode + 1; - gsl_min_fminimizer_set(s, &pdf, guess, mode, max_lim); - - // minimization - do { - iter++; - status = gsl_min_fminimizer_iterate (s); - guess = gsl_min_fminimizer_x_minimum (s); - min = gsl_min_fminimizer_x_lower (s); - max = gsl_min_fminimizer_x_upper (s); - status = gsl_min_test_interval (min, max, prec, prec); - - } while (status == GSL_CONTINUE && iter < max_iter); - double x_upp = guess; - - // Free memory - gsl_min_fminimizer_free (s); - return x_upp - x_low; -} - - /* Here we generate random numbers in a uniform * range and by using the quantile we map them * to a Landau distribution. Then we generate an @@ -266,20 +39,31 @@ int main(int argc, char** argv) { gsl_histogram* hist = gsl_histogram_alloc(bins); gsl_histogram_set_ranges_uniform(hist, min, max); - /* sample points from the Landau distribution - * and fill the histogram + + /* Sample generation + * + * Sample points from the Landau + * distribution and fill the histogram. */ + fprintf(stderr, "# Sampling\n"); + fprintf(stderr, "generating %ld points... ", samples); double x; for(size_t i=0; i D) D = d; } - - // Kolmogorov-Smirnov test + fprintf(stderr, "\n\n# Kolmogorov-Smirnov test\n"); double beta = kolmogorov_cdf(D, samples); - fprintf(stderr, "\n# K-S test results\n"); + + // print the results + fprintf(stderr, "\n## Results\n"); fprintf(stderr, "D: %f\n", D); fprintf(stderr, "α: %g\n", 1 - beta); - // Mode comparison - // - // find the bin with the maximum number of events + + /* Mode comparison + * + * Find the bin with the maximum number of events + */ double mode_o, maxbin = 0; double f_mode_o = 0; double m1, m2 = 0; @@ -308,19 +95,22 @@ int main(int argc, char** argv) { f_mode_o = hist->bin[i]; } } - fprintf(stderr, "\nstep:%.2f\n ", (max - min)/bins); + fprintf(stderr, "\n\n# Mode comparison\n"); + fprintf(stderr, "\nstep: %.2f\n ", (max - min)/bins); f_mode_o = f_mode_o/samples; mode_o = min + (maxbin + 0.5)*(max - min)/bins; // print the results double mode_e = numeric_mode(min, max); - fprintf(stderr, "\n# Numeric mode\n"); + fprintf(stderr, "\n## Results\n"); fprintf(stderr, "expected mode: %.7f\n", mode_e); fprintf(stderr, "observed mode: %.3f\n", mode_o); - // FWHM comparison - // - // find the bins x₋ and x₊ + + /* FWHM comparison + * + * Find the bins x₋ and x₊. + */ double half = f_mode_o*samples/2; m2 = samples; double x_low = 0; @@ -348,8 +138,9 @@ int main(int argc, char** argv) { double fwhm_o = x_upp - x_low; // print the results - fprintf(stderr, "\n# Numeric FWHM\n"); - double fwhm_e = numeric_fwhm(min, mode_e, max); + fprintf(stderr, "\n\n# FWHM comparison\n"); + double fwhm_e = numeric_fwhm(min, max, mode_e); + fprintf(stderr, "\n# Results\n"); fprintf(stderr, "expected FWHM: %.7f\n", fwhm_e); fprintf(stderr, "observed FWHM: %.3f\n", fwhm_o); diff --git a/ex-1/tests.c b/ex-1/tests.c new file mode 100644 index 0000000..09bb892 --- /dev/null +++ b/ex-1/tests.c @@ -0,0 +1,158 @@ +/* This file contains functions to perform + * statistical tests on the points sampled + * from a Landau distribution. + */ + +#include +#include +#include +#include + +#include "landau.h" + + +/* Kolmogorov distribution CDF + * for sample size n and statistic D + */ +double kolmogorov_cdf(double D, int n) { + double x = sqrt(n) * D; + + // trick to reduce estimate error + x += 1/(6 * sqrt(n)) + (x - 1)/(4 * n); + + // calculate the first n_terms of the series + // Σ_k=1 exp(-(2k - 1)²π²/8x²) + size_t n_terms = 30; + double *terms = calloc(n_terms, sizeof(double)); + for (size_t k=0; ksum_plain); + fprintf(stderr, "err: %f\n", abserr); + + gsl_sum_levin_utrunc_free(s); + free(terms); + + return sqrt(2*M_PI)/x * sum; +} + + +/* This is a wrapper needed by `numeric_mode` because + * the minimization expects a function to be minimized and not + * maximized. + */ +double neg_landau_pdf(double x, void* params) { + return (-1) * gsl_ran_landau_pdf(x); +} + + +/* Numerically computes the mode of a Landau + * distribution by maximising the derivative. + * The min,max parameters are the initial search + * interval for the optimisation. + */ +double numeric_mode(double min, double max) { + // create funtion + gsl_function pdf; + pdf.function = &neg_landau_pdf; + pdf.params = NULL; + + // initialize minimization + double guess = 0; + int iter = 0; + int max_iter = 100; + double prec = 1e-7; + int status; + const gsl_min_fminimizer_type * T = gsl_min_fminimizer_goldensection; + gsl_min_fminimizer * s = gsl_min_fminimizer_alloc(T); + gsl_min_fminimizer_set(s, &pdf, guess, min, max); + + // minimization + do { + iter++; + status = gsl_min_fminimizer_iterate(s); + guess = gsl_min_fminimizer_x_minimum(s); + min = gsl_min_fminimizer_x_lower(s); + max = gsl_min_fminimizer_x_upper(s); + status = gsl_min_test_interval(min, max, prec, prec); + + } while (status == GSL_CONTINUE && iter < max_iter); + + // Free memory + gsl_min_fminimizer_free(s); + return guess; +} + + +/* This is the function to be minimized in `numeric_FWHM`. + */ +double abs_landau_pdf(double x, void* params_) { + double* params = ((double *) params_); + return fabs(gsl_ran_landau_pdf(x) - params[0]); +} + + +/* Numerically computes the FWHM of Landau + * distribution by maximising the derivative. + * The `min,max` parameters are the initial search + * interval for the optimisation. `mode` can be + * computer with `numeric_mode(min, max)`. + */ +double numeric_fwhm(double min, double max, double mode) { + // create funtion + gsl_function pdf; + pdf.function = &abs_landau_pdf; + double params [1]; + params[0]= gsl_ran_landau_pdf(mode)/2; + pdf.params = params; + + // initialize minimization for x₋ + double guess = mode - 1; + double fmin, fmax; + int iter = 0; + int max_iter = 100; + double prec = 1e-7; + int status; + const gsl_min_fminimizer_type * T = gsl_min_fminimizer_goldensection; + gsl_min_fminimizer * s = gsl_min_fminimizer_alloc(T); + gsl_min_fminimizer_set(s, &pdf, guess, min, mode); + + // minimization + do { + iter++; + status = gsl_min_fminimizer_iterate(s); + guess = gsl_min_fminimizer_x_minimum(s); + fmin = gsl_min_fminimizer_x_lower(s); + fmax = gsl_min_fminimizer_x_upper(s); + status = gsl_min_test_interval(fmin, fmax, prec, prec); + } while (status == GSL_CONTINUE && iter < max_iter); + double x_low = guess; + + // initialize minimization for x₊ + guess = mode + 1; + gsl_min_fminimizer_set(s, &pdf, guess, mode, max); + + // minimization + do { + iter++; + status = gsl_min_fminimizer_iterate(s); + guess = gsl_min_fminimizer_x_minimum(s); + fmin = gsl_min_fminimizer_x_lower(s); + fmax = gsl_min_fminimizer_x_upper(s); + status = gsl_min_test_interval(fmin, fmax, prec, prec); + + } while (status == GSL_CONTINUE && iter < max_iter); + double x_upp = guess; + + // Free memory + gsl_min_fminimizer_free(s); + return x_upp - x_low; +} diff --git a/ex-1/tests.h b/ex-1/tests.h new file mode 100644 index 0000000..17aed2f --- /dev/null +++ b/ex-1/tests.h @@ -0,0 +1,28 @@ +/* This file contains functions to perform + * statistical tests on the points sampled + * from a Landau distribution. + */ + +#pragma once + +/* Kolmogorov distribution CDF + * for sample size n and statistic D + */ +double kolmogorov_cdf(double D, int n); + + +/* Numerically computes the mode of a Landau + * distribution by maximising the derivative. + * The min,max parameters are the initial search + * interval for the optimisation. + */ +double numeric_mode(double min, double max); + + +/* Numerically computes the FWHM of Landau + * distribution by maximising the derivative. + * The `min,max` parameters are the initial search + * interval for the optimisation. `mode` can be + * computer with `numeric_mode(min, max)`. + */ +double numeric_fwhm(double min, double max, double mode); diff --git a/makefile b/makefile index 8dadabb..9ce2042 100644 --- a/makefile +++ b/makefile @@ -6,7 +6,9 @@ CCOMPILE = \ mkdir -p $(@D); \ $(CC) $(CFLAGS) $^ -o $@ -ex-1/bin/%: ex-1/%.c +ex-1/bin/main: ex-1/main.c ex-1/landau.c ex-1/tests.c + $(CCOMPILE) +ex-1/bin/pdf: ex-1/pdf.c $(CCOMPILE) ex-2/bin/%: ex-2/%.c