analistica/slides/sections/4.md

87 lines
1.3 KiB
Markdown
Raw Normal View History

2020-06-07 14:32:03 +02:00
# Sample parameters estimation
2020-06-07 14:32:03 +02:00
## Sample parameters estimation
2020-06-07 00:02:20 +02:00
2020-06-07 14:32:03 +02:00
Once the points are sampled, how to estimate their median, mode and FWHM?
. . .
- Binning data $\quad \longrightarrow \quad$ result depending on bin-width
. . .
- Alternative solutions
## Sample median
$$
2020-06-07 14:32:03 +02:00
m = Q \left( \frac{1}{2} \right)
$$
2020-06-07 14:32:03 +02:00
. . .
- Sort points in ascending order
. . .
- Middle element if odd
- Average of the two central elements if even
## Sample mode
Most probable value
. . .
HSM
- Iteratively identify the smallest interval containing half points
- once the sample is reduced to less than three points, take average
## Sample FWHM
$$
2020-06-07 14:32:03 +02:00
\text{FWHM} = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
$$
. . .
2020-06-07 14:32:03 +02:00
KDE
- empirical PDF construction:
$$
2020-06-07 14:32:03 +02:00
f_\varepsilon(x) = \frac{1}{N\varepsilon} \sum_{i = 1}^N
G \left( \frac{x-x_i}{\varepsilon} \right)
$$
2020-06-07 00:02:20 +02:00
2020-06-07 14:32:03 +02:00
The parameter $\varepsilon$ controls the strenght of the smoothing
2020-06-07 00:02:20 +02:00
2020-06-07 14:32:03 +02:00
## Sample FWHM
Silverman's rule of thumb:
$$
f_\varepsilon(x) = \frac{1}{N\varepsilon} \sum_{i = 1}^N
G \left( \frac{x-x_i}{\varepsilon} \right)
\with
\varepsilon = 0.63 \, S_N
\left( \frac{d + 2}{4}N \right)^{-1/(d + 4)}
$$
with:
- $S_N$ is the sample stdev
- $d$ number of dimensions ($d = 1$)
. . .
2020-06-07 00:02:20 +02:00
2020-06-07 14:32:03 +02:00
\vspace{10pt}
2020-06-07 00:02:20 +02:00
2020-06-07 14:32:03 +02:00
Numerical root finding (Brent)