2020-06-06 19:40:48 +02:00
|
|
|
|
# Data sample
|
|
|
|
|
|
|
|
|
|
|
2020-06-07 00:02:20 +02:00
|
|
|
|
## PDF parameters
|
|
|
|
|
|
|
|
|
|
A $M(x)$ similar to $L(x)$ can be found by imposing:
|
2020-06-06 19:40:48 +02:00
|
|
|
|
|
|
|
|
|
- equal mode
|
|
|
|
|
$$
|
|
|
|
|
\mu_M = \mu_L \approx −0.22278298...
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
- equal width
|
|
|
|
|
$$
|
|
|
|
|
\text{FWHM}_M = \text{FWHM}_L = \sigma \cdot a
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
. . .
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
\implies \sigma_M \approx 1.1191486
|
|
|
|
|
$$
|
2020-06-07 00:02:20 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## PDF parameters
|
|
|
|
|
|
|
|
|
|
:::: {.columns}
|
|
|
|
|
::: {.column width=50%}
|
|
|
|
|
![](images/both-pdf-bef.pdf)
|
|
|
|
|
:::
|
|
|
|
|
|
|
|
|
|
::: {.column width=50%}
|
|
|
|
|
![](images/both-pdf-aft.pdf)
|
|
|
|
|
:::
|
|
|
|
|
::::
|