analistica/slides/sections/8.md

288 lines
3.8 KiB
Markdown
Raw Normal View History

2020-06-11 18:30:30 +02:00
# Results
2020-06-09 16:53:16 +02:00
2020-06-11 18:30:30 +02:00
## Compatibility test
2020-06-09 16:53:16 +02:00
2020-06-11 18:30:30 +02:00
Comparing sample properties:
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
$$
2020-06-11 18:30:30 +02:00
p = 1 - \text{erf} \left( \frac{t}{\sqrt{2}} \right)\ \with
t = \frac{|x\ex - x\ob|}{\sqrt{\sigma\ex^2 + \sigma\ob^2}}
2020-06-10 16:23:33 +02:00
$$
2020-06-09 16:53:16 +02:00
2020-06-11 18:30:30 +02:00
- $x\ex$ and $x\ob$ are the expected and observed values
- $\sigma\ex$ and $\sigma\ob$ are their absolute errors
2020-06-10 16:23:33 +02:00
. . .
2020-06-09 16:53:16 +02:00
2020-06-11 18:30:30 +02:00
At 95% confidence level, the values are compatible if:
$$
p > 0.05
$$
## Compatibility test
\setbeamercovered{}
\begin{center}
\begin{tikzpicture}
%notes
\draw [very thick, gray] (0,0) -- (0,3);
\draw [very thick, gray] (-1.45,1.5) -- (1.45,1.5);
\draw [very thick, gray] (-1.35,1.3) -- (-1.55,1.7);
\draw [very thick, gray] ( 1.35,1.3) -- ( 1.55,1.7);
\node [below] at (0,-0.7) {$x\ex$};
\node [above right] at (1.5,1.5) {$2 \, \sqrt{\sigma\ex^2 + \sigma\ob^2}$};
% axes
\draw [very thick, <->] (-5,4) -- (-5,0) -- (5,0);
% Gaussian
\draw [domain=-5:5, smooth, variable=\x, cyclamen, very thick]
plot ({\x}, {3*exp(-(\x*\x/3))});
\pause
% area
\fill [domain=2:5, smooth, variable=\x, cyclamen!20!white, very thick]
(2,0) -- plot ({\x}, {3*exp(-(\x*\x/3))}) -- (5,0) -- cycle;
\fill [domain=-5:-2, smooth, variable=\x, cyclamen!20!white, very thick]
(-5,0) -- plot ({\x}, {3*exp(-(\x*\x/3))}) -- (-2,0) -- cycle;
% axes
\draw [very thick, <->] (-5,4) -- (-5,0) -- (5,0);
% Gaussian
\draw [domain=-5:5, smooth, variable=\x, cyclamen, very thick]
plot ({\x}, {3*exp(-(\x*\x/3))});
%notes
\draw [thick, cyclamen] (-2,0) -- (-2,0.8);
\draw [thick, cyclamen] ( 2,0) -- ( 2,0.8);
\node at (2,-0.7) {$x\ob$};
\end{tikzpicture}
\end{center}
\setbeamercovered{transparent}
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
## Compatibility results:
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
Median:
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
:::: {.columns}
::: {.column width=50%}
- $t = 0.761$
- $p = 0.446$
:::
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
\vspace{10pt}
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
. . .
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
Mode:
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
:::: {.columns}
::: {.column width=50%}
- $t = 1.012$
- $p = 0.311$
2020-06-09 16:53:16 +02:00
:::
2020-06-10 16:23:33 +02:00
::: {.column width=50%}
2020-06-09 16:53:16 +02:00
$$
2020-06-10 16:23:33 +02:00
\hence \text{Compatible!}
2020-06-09 16:53:16 +02:00
$$
2020-06-10 16:23:33 +02:00
:::
::::
\vspace{10pt}
2020-06-09 16:53:16 +02:00
. . .
2020-06-10 16:23:33 +02:00
FWHM:
:::: {.columns}
::: {.column width=50%}
- $t=1.338$
- $p=0.181$
:::
::: {.column width=50%}
2020-06-09 16:53:16 +02:00
$$
2020-06-10 16:23:33 +02:00
\hence \text{Compatible!}
2020-06-09 16:53:16 +02:00
$$
2020-06-10 16:23:33 +02:00
:::
::::
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
## Compatibility results:
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
Median:
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
:::: {.columns}
::: {.column width=50%}
- $t = 669.940$
- $p = 0.000$
:::
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
::: {.column width=50%}
$$
\hence \text{Not compatible!}
$$
:::
::::
\vspace{10pt}
2020-06-09 16:53:16 +02:00
. . .
2020-06-10 16:23:33 +02:00
Mode:
:::: {.columns}
::: {.column width=50%}
- $t = 0.732$
- $p = 0.464$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
\vspace{10pt}
2020-06-09 16:53:16 +02:00
. . .
2020-06-10 16:23:33 +02:00
FWHM:
:::: {.columns}
::: {.column width=50%}
- $t = 1.329$
- $p = 0.184$
:::
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
# KS results
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
## Samples results
$N = 50000$ sampled points
2020-06-09 16:53:16 +02:00
. . .
2020-06-10 16:23:33 +02:00
Landau sample:
:::: {.columns}
::: {.column width=50%}
- $D = 0.004$
- $p = 0.379$
:::
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
::: {.column width=50%}
$$
\hence \text{Compatible!}
$$
:::
::::
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
\vspace{10pt}
2020-06-09 16:53:16 +02:00
2020-06-10 16:23:33 +02:00
. . .
2020-06-10 16:23:33 +02:00
Moyal sample:
2020-06-10 16:23:33 +02:00
:::: {.columns}
::: {.column width=50%}
- $D = 0.153$
- $p = 0.000$
:::
2020-06-10 16:23:33 +02:00
::: {.column width=50%}
$$
\hence \text{Not compatible!}
$$
:::
::::
2020-06-10 16:23:33 +02:00
# Trapani results
2020-06-09 16:53:16 +02:00
## Samples results
. . .
Landau sample:
:::: {.columns}
::: {.column width=33%}
$$
\mu_1
\begin{cases}
\Theta = 0.255 \\
p = 0.614
\end{cases}
$$
2020-06-09 16:53:16 +02:00
:::
::: {.column width=33% .c}
2020-06-09 16:53:16 +02:00
$$
\mu_2
\begin{cases}
\Theta = 0.432 \\
p = 0.511
\end{cases}
2020-06-09 16:53:16 +02:00
$$
:::
::: {.column width=33% .c}
$$
\hence \text{Infinite!}
$$
:::
::::
2020-06-09 16:53:16 +02:00
. . .
\vspace{20pt}
2020-06-09 16:53:16 +02:00
Moyal sample:
:::: {.columns}
::: {.column width=33%}
$$
\mu_1
\begin{cases}
\Theta^2 = 106 \\
p = 0.000
\end{cases}
$$
:::
::: {.column width=33%}
$$
\mu_2
\begin{cases}
\Theta^2 = 162 \\
p = 0.000
\end{cases}
$$
2020-06-09 16:53:16 +02:00
:::
::: {.column width=33% .c}
2020-06-09 16:53:16 +02:00
$$
\hence \text{Finite!}
2020-06-09 16:53:16 +02:00
$$
:::
::::