# Results ## Compatibility test Comparing sample properties: $$ p = 1 - \text{erf} \left( \frac{t}{\sqrt{2}} \right)\ \with t = \frac{|x\ex - x\ob|}{\sqrt{\sigma\ex^2 + \sigma\ob^2}} $$ - $x\ex$ and $x\ob$ are the expected and observed values - $\sigma\ex$ and $\sigma\ob$ are their absolute errors . . . At 95% confidence level, the values are compatible if: $$ p > 0.05 $$ ## Compatibility test \setbeamercovered{} \begin{center} \begin{tikzpicture} %notes \draw [very thick, gray] (0,0) -- (0,3); \draw [very thick, gray] (-1.45,1.5) -- (1.45,1.5); \draw [very thick, gray] (-1.35,1.3) -- (-1.55,1.7); \draw [very thick, gray] ( 1.35,1.3) -- ( 1.55,1.7); \node [below] at (0,-0.7) {$x\ex$}; \node [above right] at (1.5,1.5) {$2 \, \sqrt{\sigma\ex^2 + \sigma\ob^2}$}; % axes \draw [very thick, <->] (-5,4) -- (-5,0) -- (5,0); % Gaussian \draw [domain=-5:5, smooth, variable=\x, cyclamen, very thick] plot ({\x}, {3*exp(-(\x*\x/3))}); \pause % area \fill [domain=2:5, smooth, variable=\x, cyclamen!20!white, very thick] (2,0) -- plot ({\x}, {3*exp(-(\x*\x/3))}) -- (5,0) -- cycle; \fill [domain=-5:-2, smooth, variable=\x, cyclamen!20!white, very thick] (-5,0) -- plot ({\x}, {3*exp(-(\x*\x/3))}) -- (-2,0) -- cycle; % axes \draw [very thick, <->] (-5,4) -- (-5,0) -- (5,0); % Gaussian \draw [domain=-5:5, smooth, variable=\x, cyclamen, very thick] plot ({\x}, {3*exp(-(\x*\x/3))}); %notes \draw [thick, cyclamen] (-2,0) -- (-2,0.8); \draw [thick, cyclamen] ( 2,0) -- ( 2,0.8); \node at (2,-0.7) {$x\ob$}; \end{tikzpicture} \end{center} \setbeamercovered{transparent} ## Compatibility results: Median: :::: {.columns} ::: {.column width=50%} - $t = 0.761$ - $p = 0.446$ ::: ::: {.column width=50%} $$ \hence \text{Compatible!} $$ ::: :::: \vspace{10pt} . . . Mode: :::: {.columns} ::: {.column width=50%} - $t = 1.012$ - $p = 0.311$ ::: ::: {.column width=50%} $$ \hence \text{Compatible!} $$ ::: :::: \vspace{10pt} . . . FWHM: :::: {.columns} ::: {.column width=50%} - $t=1.338$ - $p=0.181$ ::: ::: {.column width=50%} $$ \hence \text{Compatible!} $$ ::: :::: ## Compatibility results: Median: :::: {.columns} ::: {.column width=50%} - $t = 669.940$ - $p = 0.000$ ::: ::: {.column width=50%} $$ \hence \text{Not compatible!} $$ ::: :::: \vspace{10pt} . . . Mode: :::: {.columns} ::: {.column width=50%} - $t = 0.732$ - $p = 0.464$ ::: ::: {.column width=50%} $$ \hence \text{Compatible!} $$ ::: :::: \vspace{10pt} . . . FWHM: :::: {.columns} ::: {.column width=50%} - $t = 1.329$ - $p = 0.184$ ::: ::: {.column width=50%} $$ \hence \text{Compatible!} $$ ::: :::: # KS results ## Samples results $N = 50000$ sampled points . . . Landau sample: :::: {.columns} ::: {.column width=50%} - $D = 0.004$ - $p = 0.379$ ::: ::: {.column width=50%} $$ \hence \text{Compatible!} $$ ::: :::: \vspace{10pt} . . . Moyal sample: :::: {.columns} ::: {.column width=50%} - $D = 0.153$ - $p = 0.000$ ::: ::: {.column width=50%} $$ \hence \text{Not compatible!} $$ ::: :::: # Trapani results ## Samples results . . . Landau sample: :::: {.columns} ::: {.column width=33%} $$ \mu_1 \begin{cases} \Theta = 0.255 \\ p = 0.614 \end{cases} $$ ::: ::: {.column width=33% .c} $$ \mu_2 \begin{cases} \Theta = 0.432 \\ p = 0.511 \end{cases} $$ ::: ::: {.column width=33% .c} $$ \hence \text{Infinite!} $$ ::: :::: . . . \vspace{20pt} Moyal sample: :::: {.columns} ::: {.column width=33%} $$ \mu_1 \begin{cases} \Theta^2 = 106 \\ p = 0.000 \end{cases} $$ ::: ::: {.column width=33%} $$ \mu_2 \begin{cases} \Theta^2 = 162 \\ p = 0.000 \end{cases} $$ ::: ::: {.column width=33% .c} $$ \hence \text{Finite!} $$ ::: ::::