analistica/slides/sections/4.md

173 lines
3.3 KiB
Markdown
Raw Normal View History

2020-06-10 16:23:33 +02:00
# Sample statistics
2020-06-10 16:23:33 +02:00
## Sample statistics
2020-06-07 00:02:20 +02:00
2020-06-10 16:23:33 +02:00
How to estimate sample median, mode and FWHM?
2020-06-07 14:32:03 +02:00
. . .
2020-06-10 16:23:33 +02:00
- \only<3>\strike{Binning data $\hence$ depends wildly on bin-width}
2020-06-07 14:32:03 +02:00
. . .
- Alternative solutions
2020-06-10 16:23:33 +02:00
- Robust estimators
- Kernel density estimation
2020-06-07 14:32:03 +02:00
## Sample median
2020-06-10 16:23:33 +02:00
:::: {.columns}
::: {.column width=50% .c}
$$
F(m) = \frac{1}{2}
$$
2020-06-10 16:23:33 +02:00
\vspace{20pt}
2020-06-07 14:32:03 +02:00
2020-06-10 16:23:33 +02:00
. . .
2020-06-07 14:32:03 +02:00
2020-06-10 16:23:33 +02:00
- Sort points in ascending order
. . .
- Middle element if odd
2020-06-07 14:32:03 +02:00
2020-06-10 16:23:33 +02:00
Average of the two central elements if even
:::
::: {.column width=50%}
![](images/median.pdf)
:::
::::
2020-06-07 14:32:03 +02:00
## Sample mode
Most probable value
. . .
2020-06-10 16:23:33 +02:00
Half Sample Mode
2020-06-07 14:32:03 +02:00
- Iteratively identify the smallest interval containing half points
- Once the sample is reduced to less than three points, take average
2020-06-07 14:32:03 +02:00
2020-06-10 16:23:33 +02:00
. . .
\setbeamercovered{}
\begin{center}
\begin{tikzpicture}[remember picture]
% line
\draw [line width=3, ->, cyclamen] (-5,0) -- (5,0);
\node [right] at (5,0) {$x$};
% points
\draw [blue, fill=blue] (-4.6,-0.1) rectangle (-4.8,0.1);
\draw [blue, fill=blue] (-4,-0.1) rectangle (-4.2,0.1);
\draw [blue, fill=blue] (-3.3,-0.1) rectangle (-3.5,0.1);
\draw [blue, fill=blue] (-2.3,-0.1) rectangle (-2.5,0.1);
\draw [blue, fill=blue] (-0.6,-0.1) rectangle (-0.8,0.1);
\draw [blue, fill=blue] (-0.1,-0.1) rectangle (0.1,0.1);
\draw [blue, fill=blue] (1.1,-0.1) rectangle (1.3,0.1);
\draw [blue, fill=blue] (2 ,-0.1) rectangle (2.2,0.1);
\draw [blue, fill=blue] (2.7,-0.1) rectangle (2.9,0.1);
\draw [blue, fill=blue] (4,-0.1) rectangle (4.2,0.1);
% future nodes
\node at (-1,-0.3) (1a) {};
\node at (3.1,0.3) (1b) {};
\node at (0.9,-0.3) (2a) {};
\node at (1.8,-0.3) (3a) {};
% result nodes
\node at (2.45,-0.7) (f1) {};
\node at (2.45,0.7) (f2) {};
\end{tikzpicture}
\end{center}
. . .
\begin{center}
\begin{tikzpicture}[remember picture, overlay]
% region
\draw [orange, fill=orange, opacity=0.5] (1a) rectangle (1b);
\end{tikzpicture}
\end{center}
. . .
\begin{center}
\begin{tikzpicture}[remember picture, overlay]
% region
\draw [orange, fill=orange, opacity=0.5] (2a) rectangle (1b);
\end{tikzpicture}
\end{center}
. . .
\begin{center}
\begin{tikzpicture}[remember picture, overlay]
% region
\draw [orange, fill=orange, opacity=0.5] (3a) rectangle (1b);
\end{tikzpicture}
\end{center}
. . .
\begin{center}
\begin{tikzpicture}[remember picture, overlay]
% region
\draw [cyclamen, ultra thick] (f1) -- (f2);
\end{tikzpicture}
\end{center}
2020-06-07 14:32:03 +02:00
## Sample FWHM
$$
2020-06-07 14:32:03 +02:00
\text{FWHM} = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
$$
2020-06-10 16:23:33 +02:00
\setbeamercovered{transparent}
. . .
2020-06-10 16:23:33 +02:00
Kernel Density Estimation
2020-06-07 14:32:03 +02:00
- empirical PDF construction:
$$
2020-06-07 14:32:03 +02:00
f_\varepsilon(x) = \frac{1}{N\varepsilon} \sum_{i = 1}^N
G \left( \frac{x-x_i}{\varepsilon} \right)
$$
2020-06-07 00:02:20 +02:00
The parameter $\varepsilon$ controls the strength of the smoothing
2020-06-07 14:32:03 +02:00
2020-06-07 00:02:20 +02:00
2020-06-07 14:32:03 +02:00
## Sample FWHM
Silverman's rule of thumb:
$$
f_\varepsilon(x) = \frac{1}{N\varepsilon} \sum_{i = 1}^N
G \left( \frac{x-x_i}{\varepsilon} \right)
\with
2020-06-08 18:02:21 +02:00
\varepsilon = 0.88 \, S_N
2020-06-07 14:32:03 +02:00
\left( \frac{d + 2}{4}N \right)^{-1/(d + 4)}
$$
with:
- $S_N$ is the sample standard deviation
- $d$ is number of dimensions ($d = 1$)
2020-06-07 14:32:03 +02:00
. . .
2020-06-07 00:02:20 +02:00
2020-06-10 16:23:33 +02:00
Numerical minimization (Brent) for $\quad f_{\varepsilon_{\text{max}}}$
Numerical root finding (Brent) for $\quad f_{\varepsilon}(x_{\pm}) =
\frac{f_{\varepsilon_{\text{max}}}}{2}$
## Sample FWHM
![](images/kde.pdf)