Use strict natural numbers

This commit is contained in:
rnhmjoj 2016-02-23 02:48:34 +01:00
parent 5b677c44be
commit e436701d7b
5 changed files with 37 additions and 37 deletions

View File

@ -1,8 +1,8 @@
-- | A library for real number arithmetics
module Data.Number
( -- * Classes
Continued(..), Number
, Nat(..), Whole(..)
Continued(..)
, Number, Natural
-- * Functions
, fromList, toList
, fromNumber, toNumber
@ -12,8 +12,8 @@ module Data.Number
, hom, biHom, cut
) where
import Data.Natural
import Data.Number.Types
import Data.Number.Instances
import Data.Number.Functions
import Data.Number.Internal
import Data.Number.Peano

View File

@ -4,15 +4,15 @@ module Data.Number.Functions where
import Data.Number.Types
import Data.Number.Instances
import Data.Number.Internal
import Data.Number.Peano
import Data.Natural
import Data.Ratio
-- Various --
-- | Get the precision of a 'Number' (i.e. length)
precision :: Number -> Nat
precision E = Z
precision (_:|xs) = S (precision xs)
precision :: Number -> Natural
precision E = 0
precision (_:|xs) = succ (precision xs)
-- | Alternative show function that pretty prints a 'Number'
-- also doing conversions from Peano numbers
@ -26,12 +26,12 @@ show' (M (x:|xs)) = '-' : show (toInteger x) ++ " - 1/(" ++ show' xs ++ ")"
-- Conversion --
-- | Create a 'Number' from a list of naturals
fromList :: [Nat] -> Number
fromList :: [Natural] -> Number
fromList [] = E
fromList (x:xs) = x :| fromList xs
-- | Convert a 'Number' to a list of naturals (losing the sign)
toList :: Number -> [Nat]
toList :: Number -> [Natural]
toList E = []
toList (x:|xs) = x : toList xs
@ -64,4 +64,4 @@ e :: Number
e = fmap a σ where
a n | p == 0 = 2*q
| otherwise = 1
where (q, p) = quotRem n 3
where (q, p) = quotRem n 3

View File

@ -6,7 +6,7 @@ module Data.Number.Instances where
import Data.Number.Types
import Data.Number.Internal
-- | transform a number applying a function ('Nat' -> 'Nat') to each
-- | transform a number applying a function ('Natural' -> 'Natural') to each
-- number preserving the sign.
instance Functor Continued where
fmap _ E = E

View File

@ -11,15 +11,15 @@ module Data.Number.Internal
) where
import Data.Number.Types
import Data.Number.Peano
import Data.Natural
import Data.Ratio
-- | Homographic function coefficients matrix
type Hom = (Whole, Whole, Whole, Whole)
type Hom = (Integer, Integer, Integer, Integer)
-- | Bihomographic function coefficients matrix
type BiHom = (Whole, Whole, Whole, Whole,
Whole, Whole, Whole, Whole)
type BiHom = (Integer, Integer, Integer, Integer,
Integer, Integer, Integer, Integer)
-- | Homographic function
--
@ -35,7 +35,7 @@ type BiHom = (Whole, Whole, Whole, Whole,
-- explanation.
hom :: Hom -> Number -> Number
hom (0, 0, _, _) _ = E
hom (a, _, c, _) E = toNumber (fromPeano a % fromPeano c)
hom (a, _, c, _) E = toNumber (a % c)
hom h x = case maybeEmit h of
Just d -> join d (hom (emit h d) x)
Nothing -> hom (absorb h x0) x'
@ -44,7 +44,7 @@ hom h x = case maybeEmit h of
-- Homographic helpers --
maybeEmit :: Hom -> Maybe Whole
maybeEmit :: Hom -> Maybe Integer
maybeEmit (a, b, c, d) =
if c /= 0 && d /= 0 && r == s
then Just r
@ -53,11 +53,11 @@ maybeEmit (a, b, c, d) =
s = b // d
emit :: Hom -> Whole -> Hom
emit :: Hom -> Integer -> Hom
emit (a, b, c, d) x = (c, d, a - c*x, b - d*x)
absorb :: Hom -> Whole -> Hom
absorb :: Hom -> Integer -> Hom
absorb (a, b, c, d) x = (a*x + b, a, c*x + d, c)
@ -86,7 +86,7 @@ biHom h x y = case maybeBiEmit h of
-- Bihomographic helpers
maybeBiEmit :: BiHom -> Maybe Whole
maybeBiEmit :: BiHom -> Maybe Integer
maybeBiEmit (a, b, c, d,
e, f, g, h) =
if e /= 0 && f /= 0 && g /= 0 && h /= 0 && ratiosAgree
@ -95,17 +95,17 @@ maybeBiEmit (a, b, c, d,
where r = quot a e
ratiosAgree = r == b // f && r == c // g && r == d // h
biEmit :: BiHom -> Whole -> BiHom
biEmit :: BiHom -> Integer -> BiHom
biEmit (a, b, c, d,
e, f, g, h) x = (e, f, g, h,
a - e*x, b - f*x, c - g*x, d - h*x)
biAbsorbX :: BiHom -> Whole -> BiHom
biAbsorbX :: BiHom -> Integer -> BiHom
biAbsorbX (a, b, c, d,
e, f, g, h) x = (a*x + b, a, c*x + d, c,
e*x + f, e, g*x + h, g)
biAbsorbY :: BiHom -> Whole -> BiHom
biAbsorbY :: BiHom -> Integer -> BiHom
biAbsorbY (a, b, c, d,
e, f, g, h) y = (a*y + c, b*y + d, a, b,
e*y + g, f*y + h, e, f)
@ -121,38 +121,38 @@ fromX (_, b, c, d, _, f, g, h) = abs (g*h*b - g*d*f) < abs (f*h*c - g*d*f)
toNumber :: RealFrac a => a -> Number
toNumber 0 = E
toNumber x
| x < 0 = M (toNumber (-x))
| x < 0 = M (toNumber (negate x))
| x' == 0 = x0 :| E
| otherwise = x0 :| toNumber (recip x')
where (x0, x') = properFraction x
-- | Truncate a 'Number' to a given length @n@
cut :: Nat -> Number -> Number
cut :: Natural -> Number -> Number
cut _ E = E
cut n (M x) = M (cut n x)
cut n _ | n <= 0 = E
cut n (x :| xs) = x :| cut (n-1) xs
-- | Split a Number into a 'Whole' (the most significant of the fraction)
-- | Split a Number into a 'Integer' (the most significant of the fraction)
-- and the rest of the Number. Equivalent to @(floor x, x - floor x)@
-- for a floating point.
split :: Number -> (Whole, Number)
split :: Number -> (Integer, Number)
split x = (first x, rest x)
-- | Essentially the inverse of split
join :: Whole -> Number -> Number
join (Whole x0 Neg) = M . (x0 :|)
join (Whole x0 Pos) = (x0 :|)
join :: Integer -> Number -> Number
join x0 x | x0 < 0 = M (negate (fromInteger x0) :| x)
| otherwise = (fromInteger x0 :| x)
-- | Extract the first natural of the fraction as a 'Whole' number
first :: Number -> Whole
-- | Extract the first natural of the fraction as a 'Integer' number
first :: Number -> Integer
first E = 0
first (M E) = 0
first (M (x:|_)) = Whole x Neg
first (x:|_) = Whole x Pos
first (M (x:|_)) = negate (toInteger x)
first (x:|_) = toInteger x
-- | Extract the "tail" of a 'Number' as a new 'Number'

View File

@ -1,9 +1,9 @@
-- | Definition of the continued fraction type
module Data.Number.Types where
import Data.Number.Peano
import Data.Natural
infixr 5 :|
infixr 5 :|
-- | ==Continued fraction type
-- Represents a simple continued fraction of the form:
--
@ -27,4 +27,4 @@ data Continued a =
deriving (Eq, Ord, Show, Read)
-- | Real numbers datatype (a continued fraction of naturals)
type Number = Continued Nat
type Number = Continued Natural