Initial commit

This commit is contained in:
rnhmjoj 2015-06-01 17:08:39 +02:00
commit bbc90e1638
9 changed files with 268 additions and 0 deletions

20
LICENSE Normal file
View File

@ -0,0 +1,20 @@
Copyright (c) 2015 Michele Guerini Rooc
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

2
Setup.hs Normal file
View File

@ -0,0 +1,2 @@
import Distribution.Simple
main = defaultMain

25
number.cabal Normal file
View File

@ -0,0 +1,25 @@
name: number
version: 0.1.0.0
-- synopsis:
-- description:
license: MIT
license-file: LICENSE
author: Michele Guerini Rocco
maintainer: micheleguerinirocco@me.com
-- copyright:
category: Math
build-type: Simple
-- extra-source-files:
cabal-version: >=1.10
library
exposed-modules: Data.Number,
Data.Number.Functions,
Data.Number.Types,
Data.Number.Instances,
Data.Number.Internal
other-extensions: TypeSynonymInstances, FlexibleInstances
build-depends: base >=4.8, numericpeano
hs-source-dirs: src
default-language: Haskell2010

11
src/Data/Number.hs Normal file
View File

@ -0,0 +1,11 @@
module Data.Number
( module Data.Number.Types
, module Data.Number.Functions
, module Data.Number.Instances
, Nat(..)
) where
import Data.Number.Types
import Data.Number.Instances
import Data.Number.Functions
import Numeric.Peano

View File

@ -0,0 +1,28 @@
module Data.Number.Functions where
import Numeric.Peano
import Data.Number.Types
import Data.Number.Instances
import Data.Number.Internal
-- Various --
precision :: Number -> Nat
precision E = Z
precision (_:|xs) = S (precision xs)
show' :: Number -> String
show' E = "0"
show' (x:|E) = show (toInteger x)
show' (x:|xs) = show (toInteger x) ++ " + 1/(" ++ show' xs ++ ")"
show' (M (x:|xs)) = "-" ++ show (toInteger x) ++ " - 1/(" ++ show' xs ++ ")"
-- Conversion --
fromList :: [Nat] -> Number
fromList [] = E
fromList (x:xs) = x :| fromList xs
toList :: Number -> [Nat]
toList E = []
toList (x:|xs) = x : toList xs

View File

@ -0,0 +1,73 @@
{-# LANGUAGE TypeSynonymInstances, FlexibleInstances #-}
module Data.Number.Instances where
import Data.Number.Types
import Data.Number.Internal
instance Functor Continued where
fmap _ E = E
fmap f (M x) = M (fmap f x)
fmap f (x:|xs) = f x :| fmap f xs
instance Num Number where
(+) = operator (0, 1, 1, 0, 1, 0, 0, 0)
(-) = operator (0, 1, -1, 0, 1, 0, 0, 0)
(*) = operator (0, 0, 0, 1, 1, 0, 0, 0)
abs (M x) = x
abs x = x
negate (M x) = x
negate x = M x
fromInteger = toNumber . fromIntegral
signum E = 0
signum (M _) = -1
signum _ = 1
instance Real Number where
toRational = fromNumber
instance Fractional Number where
(/) = operator (0, 1, 0, 0, 0, 0, 1, 0)
fromRational = toNumber
-- Helpers --
fromNumber :: RealFrac a => Number -> a
fromNumber E = 0
fromNumber (M x) = negate (fromNumber x)
fromNumber (x :| E) = fromIntegral x
fromNumber (x :| xs) = fromIntegral x + 1 / (fromNumber xs)
toNumber :: (Show a, RealFrac a) => a -> Number
toNumber 0 = E
toNumber x0
| x0 < 0 = M (n :| toNumber x1)
| otherwise = n :| toNumber x1
where
(n,f) = properFraction (abs x0)
x1 | f < 1e-6 = 0
| otherwise = 1/f
-- constants --
φ :: Number
φ = 1 :| φ
σ :: Number
σ = σ' 0 where
σ' n = n :| σ' (succ n)
π :: Number
π = toNumber pi
e :: Number
e = fmap a σ where
a n | p == 0 = 2*q
| otherwise = 1
where (q, p) = quotRem n 3

View File

@ -0,0 +1,93 @@
module Data.Number.Internal
( operator
, cut
, first
, rest
, split
) where
import Data.Number.Types
import Data.Ratio
import Numeric.Peano
type Matrix = (Whole, Whole, Whole, Whole, Whole, Whole, Whole, Whole)
operator :: Matrix -> Number -> Number -> Number
operator c x y =
case operator' c x y False of
[] -> E
m -> if head m < 0
then M $ fromList (map toNat m)
else fromList (map toNat m)
where
fromList [] = E
fromList (x:xs) = x :| fromList xs
operator' :: Matrix -> Number -> Number -> Bool -> [Whole]
operator' (_,_,_,_,0,0,0,0) _ _ _ = []
operator' (a,b,c,d,e,f,g,h) x y end
| t = r : operator' (e, f, g, h, a-e*r, b-f*r, c-g*r, d-h*r) x y end
| x/=E && s = operator' (b, a+b*p, d, c+d*p, f, e+f*p, h, g+h*p) x' y end
| x==E && s = operator' (b, b, d, d, f, f, h, h) E y end
| y/=E = operator' (c, d, a+c*q, b+d*q, g, h, e+g*q, f+h*q) x y' end
| otherwise = operator' (c, d, c, d, g, h, g, h) x E True
where
r = a // e
(p, x') = split x
(q, y') = split y
t = not (any (==0) [e,f,g,h]) && all (==r) [b//f, c//g, d//h]
s | end = True
| any (==0) [f,g,e,h] = False
| otherwise = abs (b%f - a%e) > abs (c%g - a%e)
cut :: Nat -> Number -> Number
cut _ E = E
cut n (M x) = M (cut n x)
cut n _ | n <= 0 = E
cut n (x :| xs) = x :| cut (n-1) xs
split :: Number -> (Whole, Number)
split x = (first x, rest x)
first :: Number -> Whole
first E = 0
first (M E) = 0
first (M (x:|_)) = Whole x Neg
first (x:|_) = Whole x Pos
rest :: Number -> Number
rest E = E
rest (M E) = E
rest (M x) = M (rest x)
rest (_:|xs) = xs
-- Peano arithmethics --
toNat :: Whole -> Nat
toNat (Whole n _) = n
(//) :: Integral a => a -> a -> a
(//) = quot
instance Real Whole where
toRational = (%1) . toInteger
instance Integral Whole where
toInteger (Whole z Pos) = (fromPeano z)
toInteger (Whole z Neg) = -(fromPeano z)
quotRem (Whole a s) (Whole b s') = (Whole q sign, Whole r Pos)
where
q = quot a b
r = a - q * b
sign | s == s' && s == Pos = Pos
| s == s' && s == Neg = Pos
| otherwise = Neg

9
src/Data/Number/Types.hs Normal file
View File

@ -0,0 +1,9 @@
module Data.Number.Types where
import Numeric.Peano
infixr 5 :|
data Continued a = M (Continued a) | a :| (Continued a) | E
deriving (Eq, Ord, Show, Read)
type Number = Continued Nat

7
src/test.hs Normal file
View File

@ -0,0 +1,7 @@
import Data.Number
print' = putStrLn . show'
main = do
let x = toNumber pi
mapM (print . toInteger) (toList x)