Add preliminary Haddock docs

This commit is contained in:
rnhmjoj 2015-06-01 22:55:25 +02:00
parent dc17819f56
commit 414ec21041
6 changed files with 75 additions and 12 deletions

View File

@ -1,6 +1,6 @@
name: number name: number
version: 0.1.0.0 version: 0.1.0.0
synopsis: A datatype for real numbers synopsis: A library for real numbers
description: description:
Data.Number is an attempt to give an almost complete Data.Number is an attempt to give an almost complete

View File

@ -1,8 +1,15 @@
-- | A library for real number arithmetics
module Data.Number module Data.Number
( module Data.Number.Types ( -- * Classes
, module Data.Number.Functions Continued(..), Number
, module Data.Number.Instances , Nat(..), Whole(..)
, Nat(..) -- * Functions
, fromList, toList
, fromNumber, toNumber
-- * Constants
, σ, φ, π, e
-- * Internals
, operator, cut
) where ) where
import Data.Number.Types import Data.Number.Types

View File

@ -1,3 +1,4 @@
-- | Common functions and constants
module Data.Number.Functions where module Data.Number.Functions where
import Data.Number.Types import Data.Number.Types
@ -8,10 +9,13 @@ import Data.Number.Peano
-- Various -- -- Various --
-- | Get the precision of a 'Number' (i.e. length)
precision :: Number -> Nat precision :: Number -> Nat
precision E = Z precision E = Z
precision (_:|xs) = S (precision xs) precision (_:|xs) = S (precision xs)
-- | Alternative show function that pretty prints a 'Number'
-- also doing conversions from Peano numbers
show' :: Number -> String show' :: Number -> String
show' E = "0" show' E = "0"
show' (x:|E) = show (toInteger x) show' (x:|E) = show (toInteger x)
@ -21,10 +25,12 @@ show' (M (x:|xs)) = '-' : show (toInteger x) ++ " - 1/(" ++ show' xs ++ ")"
-- Conversion -- -- Conversion --
-- | Create a 'Number' from a list of naturals
fromList :: [Nat] -> Number fromList :: [Nat] -> Number
fromList [] = E fromList [] = E
fromList (x:xs) = x :| fromList xs fromList (x:xs) = x :| fromList xs
-- | Convert a 'Number' to a list of naturals (losing the sign)
toList :: Number -> [Nat] toList :: Number -> [Nat]
toList E = [] toList E = []
toList (x:|xs) = x : toList xs toList (x:|xs) = x : toList xs
@ -32,16 +38,28 @@ toList (x:|xs) = x : toList xs
-- constants -- -- constants --
φ :: Number -- | The infinite continued fraction whose terms are naturals numbers
φ = 1 :| φ --
-- \[0, 1, 2, 3, 4,...\] = 0.6977746...
σ :: Number σ :: Number
σ = σ' 0 where σ = σ' 0 where
σ' n = n :| σ' (succ n) σ' n = n :| σ' (succ n)
-- | The golden ratio
--
-- φ = (1 + √5)/2 = 1.6180339...
φ :: Number
φ = 1 :| φ
-- | Pi: the ratio of a circle's circumference to its diameter
--
-- π = 3.1415926...
π :: Number π :: Number
π = toNumber pi π = toNumber pi
-- | Euler's number: the base of the natural logarithm
--
-- e = 2.7182818...
e :: Number e :: Number
e = fmap a σ where e = fmap a σ where
a n | p == 0 = 2*q a n | p == 0 = 2*q

View File

@ -1,3 +1,4 @@
-- | Class instances for the continued fraction datatype
{-# LANGUAGE TypeSynonymInstances, FlexibleInstances #-} {-# LANGUAGE TypeSynonymInstances, FlexibleInstances #-}
module Data.Number.Instances where module Data.Number.Instances where
@ -5,21 +6,27 @@ module Data.Number.Instances where
import Data.Number.Types import Data.Number.Types
import Data.Number.Internal import Data.Number.Internal
-- | transform a number applying a function ('Nat' -> 'Nat') to each
-- number preserving the sign.
instance Functor Continued where instance Functor Continued where
fmap _ E = E fmap _ E = E
fmap f (M x) = M (fmap f x) fmap f (M x) = M (fmap f x)
fmap f (x:|xs) = f x :| fmap f xs fmap f (x:|xs) = f x :| fmap f xs
-- | Basic Foldable instance implemented exactly as a list.
instance Foldable Continued where instance Foldable Continued where
foldr f z E = z foldr f z E = z
foldr f z (M x) = foldr f z x foldr f z (M x) = foldr f z x
foldr f z (x:|xs) = f x (foldr f z xs) foldr f z (x:|xs) = f x (foldr f z xs)
-- | Same as above.
instance Traversable Continued where instance Traversable Continued where
traverse _ E = pure E traverse _ E = pure E
traverse f (M x) = traverse f x traverse f (M x) = traverse f x
traverse f (x:|xs) = (:|) <$> f x <*> traverse f xs traverse f (x:|xs) = (:|) <$> f x <*> traverse f xs
-- | The sign is given by the first number of the fraction.
-- Other number are always considered positive.
instance Num Number where instance Num Number where
(+) = operator (0, 1, 1, 0, 1, 0, 0, 0) (+) = operator (0, 1, 1, 0, 1, 0, 0, 0)
(-) = operator (0, 1, -1, 0, 1, 0, 0, 0) (-) = operator (0, 1, -1, 0, 1, 0, 0, 0)
@ -37,9 +44,11 @@ instance Num Number where
signum (M _) = -1 signum (M _) = -1
signum _ = 1 signum _ = 1
-- | Allows conversion to a rational
instance Real Number where instance Real Number where
toRational = fromNumber toRational = fromNumber
-- | Allows division between 'Number's and conversion from a rational
instance Fractional Number where instance Fractional Number where
(/) = operator (0, 1, 0, 0, 0, 0, 1, 0) (/) = operator (0, 1, 0, 0, 0, 0, 1, 0)
fromRational = toNumber fromRational = toNumber
@ -47,12 +56,14 @@ instance Fractional Number where
-- Helpers -- -- Helpers --
-- | Convert a 'Number' into a 'RealFrac' number
fromNumber :: RealFrac a => Number -> a fromNumber :: RealFrac a => Number -> a
fromNumber E = 0 fromNumber E = 0
fromNumber (M x) = negate (fromNumber x) fromNumber (M x) = negate (fromNumber x)
fromNumber (x :| E) = fromIntegral x fromNumber (x :| E) = fromIntegral x
fromNumber (x :| xs) = fromIntegral x + 1 / (fromNumber xs) fromNumber (x :| xs) = fromIntegral x + 1 / (fromNumber xs)
-- | Convert a 'RealFrac' number into a 'Number'
toNumber :: (Show a, RealFrac a) => a -> Number toNumber :: (Show a, RealFrac a) => a -> Number
toNumber 0 = E toNumber 0 = E
toNumber x0 toNumber x0

View File

@ -1,3 +1,4 @@
-- | Data.Number internals
module Data.Number.Internal module Data.Number.Internal
( operator ( operator
, cut , cut
@ -11,9 +12,17 @@ import Data.Number.Peano
import Data.Ratio import Data.Ratio
-- | Operator Matrix
type Matrix = (Whole, Whole, Whole, Whole, Whole, Whole, Whole, Whole) type Matrix = (Whole, Whole, Whole, Whole, Whole, Whole, Whole, Whole)
-- | Continued fraction operator (implements Gosper's arithmetics)
--
-- Given two 'Number' @x@, @y@ and the operator matrix
-- @\<a, b, c, d, e, f, g, h\>@
-- calculates @z = (a + bx + cy + dxy) / (e + fx + gy + hxy)@
--
-- See <http://perl.plover.com/yak/cftalk/INFO/gosper.txt> for a complete
-- explanation.
operator :: Matrix -> Number -> Number -> Number operator :: Matrix -> Number -> Number -> Number
operator c x y = operator c x y =
case operator' c x y False of case operator' c x y False of
@ -43,6 +52,7 @@ operator' (a,b,c,d,e,f,g,h) x y end
| otherwise = abs (b%f - a%e) > abs (c%g - a%e) | otherwise = abs (b%f - a%e) > abs (c%g - a%e)
-- | Truncate a 'Number' to a given length @n@
cut :: Nat -> Number -> Number cut :: Nat -> Number -> Number
cut _ E = E cut _ E = E
cut n (M x) = M (cut n x) cut n (M x) = M (cut n x)
@ -50,10 +60,14 @@ cut n _ | n <= 0 = E
cut n (x :| xs) = x :| cut (n-1) xs cut n (x :| xs) = x :| cut (n-1) xs
-- | Split a Number into a 'Whole' (the most significant of the fraction)
-- and the rest of the Number. Equivalent to @(floor x, x - floor x)@
-- for a floating point.
split :: Number -> (Whole, Number) split :: Number -> (Whole, Number)
split x = (first x, rest x) split x = (first x, rest x)
-- | Extract the first natural of the fraction as a 'Whole' number
first :: Number -> Whole first :: Number -> Whole
first E = 0 first E = 0
first (M E) = 0 first (M E) = 0
@ -61,6 +75,8 @@ first (M (x:|_)) = Whole x Neg
first (x:|_) = Whole x Pos first (x:|_) = Whole x Pos
-- | Extract the "tail" of a 'Number' as a new 'Number'
-- Equivalent to @(x - floor x)@ for a floating point.
rest :: Number -> Number rest :: Number -> Number
rest E = E rest E = E
rest (M E) = E rest (M E) = E

View File

@ -1,9 +1,20 @@
-- | Definition of the continued fraction type
module Data.Number.Types where module Data.Number.Types where
import Data.Number.Peano import Data.Number.Peano
infixr 5 :| infixr 5 :|
data Continued a = M (Continued a) | a :| (Continued a) | E -- | ==Continued fraction type
-- represents a simple continued fraction of the form:
-- @[a0, a1, a2,...] = a0 + 1\/(a1 + 1\/(a2 + 1\/...))@
--
-- == /Cons/ operator
-- @n :| x @ equivalent to @n@ + 1/@x@
data Continued a =
M (Continued a) -- ^Negative number
| a :| (Continued a) -- ^Positive number
| E -- ^Zero
deriving (Eq, Ord, Show, Read) deriving (Eq, Ord, Show, Read)
-- | Real numbers datatype (a continued fraction of naturals)
type Number = Continued Nat type Number = Continued Nat