misc/haskell/exs/MU.hs

44 lines
881 B
Haskell
Raw Normal View History

2018-08-05 18:53:07 +02:00
#!/usr/bin/env nix-script
#!>haskell
#! haskell | regex-compat random
{- GEB exercise -}
import Text.Regex
import Text.Printf
import System.Random
type Theorem = String
type Rule = String
choice :: [a] -> IO a
choice xs = (xs !!) <$> randomRIO (0, length xs - 1)
step :: (Rule, Theorem) -> String
step = uncurry $ printf " -%s-> %s"
derive :: Theorem -> IO [(Rule, Theorem)]
derive "M" = return []
derive "MU" = return []
derive t = do
(rule, name) <- choice rules
let next = rule t
if rule t /= t
then ((name, next) :) <$> derive next
else derive t
axiom = "MI"
transforms =
[ ("I$", "IU")
, ("M(.?)", "M\\1\\1")
, ("III", "U")
, ("UU", "") ]
rules = zip (map make transforms) ["I", "II", "III", "IV"] where
make (a, b) = flip (subRegex $ mkRegex a) b
main = do
proof <- concatMap step <$> derive axiom
putStrLn $ axiom ++ proof