161 lines
5.3 KiB
Go
161 lines
5.3 KiB
Go
package mainline
|
||
|
||
import (
|
||
"net"
|
||
|
||
"github.com/anacrolix/torrent/bencode"
|
||
sockaddr "github.com/libp2p/go-sockaddr/net"
|
||
"go.uber.org/zap"
|
||
"golang.org/x/sys/unix"
|
||
)
|
||
|
||
type Transport struct {
|
||
fd int
|
||
laddr *net.UDPAddr
|
||
started bool
|
||
buffer []byte
|
||
|
||
// OnMessage is the function that will be called when Transport receives a packet that is
|
||
// successfully unmarshalled as a syntactically correct Message (but -of course- the checking
|
||
// the semantic correctness of the Message is left to Protocol).
|
||
onMessage func(*Message, *net.UDPAddr)
|
||
// OnCongestion
|
||
onCongestion func()
|
||
}
|
||
|
||
func NewTransport(laddr string, onMessage func(*Message, *net.UDPAddr), onCongestion func()) *Transport {
|
||
t := new(Transport)
|
||
/* The field size sets a theoretical limit of 65,535 bytes (8 byte header + 65,527 bytes of
|
||
* data) for a UDP datagram. However the actual limit for the data length, which is imposed by
|
||
* the underlying IPv4 protocol, is 65,507 bytes (65,535 − 8 byte UDP header − 20 byte IP
|
||
* header).
|
||
*
|
||
* In IPv6 jumbograms it is possible to have UDP packets of size greater than 65,535 bytes.
|
||
* RFC 2675 specifies that the length field is set to zero if the length of the UDP header plus
|
||
* UDP data is greater than 65,535.
|
||
*
|
||
* https://en.wikipedia.org/wiki/User_Datagram_Protocol
|
||
*/
|
||
t.buffer = make([]byte, 65507)
|
||
t.onMessage = onMessage
|
||
t.onCongestion = onCongestion
|
||
|
||
var err error
|
||
t.laddr, err = net.ResolveUDPAddr("udp", laddr)
|
||
if err != nil {
|
||
zap.L().Panic("Could not resolve the UDP address for the trawler!", zap.Error(err))
|
||
}
|
||
if t.laddr.IP.To4() == nil {
|
||
zap.L().Panic("IP address is not IPv4!")
|
||
}
|
||
|
||
return t
|
||
}
|
||
|
||
func (t *Transport) Start() {
|
||
// Why check whether the Transport `t` started or not, here and not -for instance- in
|
||
// t.Terminate()?
|
||
// Because in t.Terminate() the programmer (i.e. you & me) would stumble upon an error while
|
||
// trying close an uninitialised net.UDPConn or something like that: it's mostly harmless
|
||
// because its effects are immediate. But if you try to start a Transport `t` for the second
|
||
// (or the third, 4th, ...) time, it will keep spawning goroutines and any small mistake may
|
||
// end up in a debugging horror.
|
||
// Here ends my justification.
|
||
if t.started {
|
||
zap.L().Panic("Attempting to Start() a mainline/Transport that has been already started! (Programmer error.)")
|
||
}
|
||
t.started = true
|
||
|
||
var err error
|
||
t.fd, err = unix.Socket(unix.SOCK_DGRAM, unix.AF_INET, 0)
|
||
if err != nil {
|
||
zap.L().Fatal("Could NOT create a UDP socket!", zap.Error(err))
|
||
}
|
||
|
||
var ip [4]byte
|
||
copy(ip[:], t.laddr.IP.To4())
|
||
err = unix.Bind(t.fd, &unix.SockaddrInet4{Addr: ip, Port: t.laddr.Port})
|
||
if err != nil {
|
||
zap.L().Fatal("Could NOT bind the socket!", zap.Error(err))
|
||
}
|
||
|
||
go t.readMessages()
|
||
}
|
||
|
||
func (t *Transport) Terminate() {
|
||
unix.Close(t.fd)
|
||
}
|
||
|
||
// readMessages is a goroutine!
|
||
func (t *Transport) readMessages() {
|
||
for {
|
||
n, fromSA, err := unix.Recvfrom(t.fd, t.buffer, 0)
|
||
if err == unix.EPERM || err == unix.ENOBUFS { // todo: are these errors possible for recvfrom?
|
||
zap.L().Warn("READ CONGESTION!", zap.Error(err))
|
||
t.onCongestion()
|
||
} else if err != nil {
|
||
// TODO: isn't there a more reliable way to detect if UDPConn is closed?
|
||
zap.L().Warn("Could NOT read an UDP packet!", zap.Error(err))
|
||
}
|
||
|
||
if n == 0 {
|
||
/* Datagram sockets in various domains (e.g., the UNIX and Internet domains) permit
|
||
* zero-length datagrams. When such a datagram is received, the return value (n) is 0.
|
||
*/
|
||
continue
|
||
}
|
||
|
||
from := sockaddr.SockaddrToUDPAddr(fromSA)
|
||
if from == nil {
|
||
zap.L().Panic("dht mainline transport SockaddrToUDPAddr: nil")
|
||
}
|
||
|
||
var msg Message
|
||
err = bencode.Unmarshal(t.buffer[:n], &msg)
|
||
if err != nil {
|
||
// couldn't unmarshal packet data
|
||
continue
|
||
}
|
||
|
||
t.onMessage(&msg, from)
|
||
}
|
||
}
|
||
|
||
func (t *Transport) WriteMessages(msg *Message, addr *net.UDPAddr) {
|
||
data, err := bencode.Marshal(msg)
|
||
if err != nil {
|
||
zap.L().Panic("Could NOT marshal an outgoing message! (Programmer error.)")
|
||
}
|
||
|
||
addrSA := sockaddr.NetAddrToSockaddr(addr)
|
||
if addrSA == nil {
|
||
zap.L().Debug("Wrong net address for the remote peer!",
|
||
zap.String("addr", addr.String()))
|
||
return
|
||
}
|
||
|
||
err = unix.Sendto(t.fd, data, 0, addrSA)
|
||
if err == unix.EPERM || err == unix.ENOBUFS {
|
||
/* EPERM (errno: 1) is kernel's way of saying that "you are far too fast, chill". It is
|
||
* also likely that we have received a ICMP source quench packet (meaning, that we *really*
|
||
* need to slow down.
|
||
*
|
||
* Read more here: http://www.archivum.info/comp.protocols.tcp-ip/2009-05/00088/UDP-socket-amp-amp-sendto-amp-amp-EPERM.html
|
||
*
|
||
* > Note On BSD systems (OS X, FreeBSD, etc.) flow control is not supported for
|
||
* > DatagramProtocol, because send failures caused by writing too many packets cannot be
|
||
* > detected easily. The socket always appears ‘ready’ and excess packets are dropped; an
|
||
* > OSError with errno set to errno.ENOBUFS may or may not be raised; if it is raised, it
|
||
* > will be reported to DatagramProtocol.error_received() but otherwise ignored.
|
||
*
|
||
* Source: https://docs.python.org/3/library/asyncio-protocol.html#flow-control-callbacks
|
||
*/
|
||
//zap.L().Warn("WRITE CONGESTION!", zap.Error(err))
|
||
if t.onCongestion != nil {
|
||
t.onCongestion()
|
||
}
|
||
} else if err != nil {
|
||
zap.L().Warn("Could NOT write an UDP packet!", zap.Error(err))
|
||
}
|
||
}
|