magnetico/cmd/magneticod/dht/mainline/transport.go

160 lines
5.3 KiB
Go
Raw Normal View History

2017-08-08 13:58:51 +02:00
package mainline
import (
"net"
"github.com/anacrolix/torrent/bencode"
sockaddr "github.com/libp2p/go-sockaddr/net"
"go.uber.org/zap"
"golang.org/x/sys/unix"
2017-08-08 13:58:51 +02:00
)
type Transport struct {
fd int
laddr *net.UDPAddr
2017-08-08 13:58:51 +02:00
started bool
buffer []byte
2017-08-08 13:58:51 +02:00
// OnMessage is the function that will be called when Transport receives a packet that is
// successfully unmarshalled as a syntactically correct Message (but -of course- the checking
// the semantic correctness of the Message is left to Protocol).
onMessage func(*Message, *net.UDPAddr)
// OnCongestion
onCongestion func()
2017-08-08 13:58:51 +02:00
}
func NewTransport(laddr string, onMessage func(*Message, *net.UDPAddr), onCongestion func()) *Transport {
t := new(Transport)
/* The field size sets a theoretical limit of 65,535 bytes (8 byte header + 65,527 bytes of
* data) for a UDP datagram. However the actual limit for the data length, which is imposed by
* the underlying IPv4 protocol, is 65,507 bytes (65,535 8 byte UDP header 20 byte IP
* header).
*
* In IPv6 jumbograms it is possible to have UDP packets of size greater than 65,535 bytes.
* RFC 2675 specifies that the length field is set to zero if the length of the UDP header plus
* UDP data is greater than 65,535.
*
* https://en.wikipedia.org/wiki/User_Datagram_Protocol
*/
t.buffer = make([]byte, 65507)
t.onMessage = onMessage
t.onCongestion = onCongestion
var err error
t.laddr, err = net.ResolveUDPAddr("udp", laddr)
if err != nil {
zap.L().Panic("Could not resolve the UDP address for the trawler!", zap.Error(err))
}
if t.laddr.IP.To4() == nil {
zap.L().Panic("IP address is not IPv4!")
}
2017-08-08 13:58:51 +02:00
return t
2017-08-08 13:58:51 +02:00
}
func (t *Transport) Start() {
// Why check whether the Transport `t` started or not, here and not -for instance- in
// t.Terminate()?
// Because in t.Terminate() the programmer (i.e. you & me) would stumble upon an error while
// trying close an uninitialised net.UDPConn or something like that: it's mostly harmless
// because its effects are immediate. But if you try to start a Transport `t` for the second
// (or the third, 4th, ...) time, it will keep spawning goroutines and any small mistake may
// end up in a debugging horror.
// Here ends my justification.
if t.started {
zap.L().Panic("Attempting to Start() a mainline/Transport that has been already started! (Programmer error.)")
}
t.started = true
var err error
t.fd, err = unix.Socket(unix.SOCK_DGRAM, unix.AF_INET, 0)
2017-08-08 13:58:51 +02:00
if err != nil {
zap.L().Fatal("Could NOT create a UDP socket!", zap.Error(err))
}
var ip [4]byte
copy(ip[:], t.laddr.IP.To4())
err = unix.Bind(t.fd, &unix.SockaddrInet4{Addr: ip, Port: t.laddr.Port})
if err != nil {
zap.L().Fatal("Could NOT bind the socket!", zap.Error(err))
}
2017-08-08 13:58:51 +02:00
go t.readMessages()
}
func (t *Transport) Terminate() {
unix.Close(t.fd)
2017-08-08 13:58:51 +02:00
}
// readMessages is a goroutine!
func (t *Transport) readMessages() {
for {
n, fromSA, err := unix.Recvfrom(t.fd, t.buffer, 0)
if err == unix.EPERM || err == unix.ENOBUFS { // todo: are these errors possible for recvfrom?
zap.L().Warn("READ CONGESTION!", zap.Error(err))
t.onCongestion()
} else if err != nil {
zap.L().Warn("Could NOT read an UDP packet!", zap.Error(err))
2017-08-08 13:58:51 +02:00
}
if n == 0 {
/* Datagram sockets in various domains (e.g., the UNIX and Internet domains) permit
* zero-length datagrams. When such a datagram is received, the return value (n) is 0.
*/
continue
}
from := sockaddr.SockaddrToUDPAddr(fromSA)
if from == nil {
zap.L().Panic("dht mainline transport SockaddrToUDPAddr: nil")
}
2017-08-08 13:58:51 +02:00
var msg Message
err = bencode.Unmarshal(t.buffer[:n], &msg)
2017-08-08 13:58:51 +02:00
if err != nil {
// couldn't unmarshal packet data
continue
2017-08-08 13:58:51 +02:00
}
t.onMessage(&msg, from)
2017-08-08 13:58:51 +02:00
}
}
func (t *Transport) WriteMessages(msg *Message, addr *net.UDPAddr) {
2017-08-08 13:58:51 +02:00
data, err := bencode.Marshal(msg)
if err != nil {
zap.L().Panic("Could NOT marshal an outgoing message! (Programmer error.)")
}
addrSA := sockaddr.NetAddrToSockaddr(addr)
if addrSA == nil {
zap.L().Debug("Wrong net address for the remote peer!",
zap.String("addr", addr.String()))
return
}
err = unix.Sendto(t.fd, data, 0, addrSA)
if err == unix.EPERM || err == unix.ENOBUFS {
/* EPERM (errno: 1) is kernel's way of saying that "you are far too fast, chill". It is
* also likely that we have received a ICMP source quench packet (meaning, that we *really*
* need to slow down.
*
* Read more here: http://www.archivum.info/comp.protocols.tcp-ip/2009-05/00088/UDP-socket-amp-amp-sendto-amp-amp-EPERM.html
*
* > Note On BSD systems (OS X, FreeBSD, etc.) flow control is not supported for
* > DatagramProtocol, because send failures caused by writing too many packets cannot be
* > detected easily. The socket always appears ready and excess packets are dropped; an
* > OSError with errno set to errno.ENOBUFS may or may not be raised; if it is raised, it
* > will be reported to DatagramProtocol.error_received() but otherwise ignored.
*
* Source: https://docs.python.org/3/library/asyncio-protocol.html#flow-control-callbacks
*/
zap.L().Warn("WRITE CONGESTION!", zap.Error(err))
if t.onCongestion != nil {
t.onCongestion()
}
} else if err != nil {
zap.L().Warn("Could NOT write an UDP packet!", zap.Error(err))
2017-08-08 13:58:51 +02:00
}
}