# coding: utf-8 from __future__ import print_function, division, unicode_literals import numpy as np import uncertainties.umath as um import matplotlib.pyplot as plt from lab import * ## ## Impedance of a resistor ## (all SI units) R = ufloat(996, 4) # resistor (for oscilloscope) # frequency nu = array(60, 100, 150, 200, 300, 500, 750, 1e3, 1.5e3, 2e3, 3e3, 5e3, 8e3, 12e3, 15e3, 20e3, 25e3, 40e3, 50e3, 60e3, 75e3, 100e3, 150e3, 200e3, 250e3, 300e3, 350e3) # tension drop (via voltmeter) Vm = array(1.564, 1.564, 1.562, 1.558, 1.563, 1.552, 1.536, 1.518, 1.470, 1.417, 1.303, 1.096, 0.878, 0.715, 0.644, 0.575, 0.533, 0.470, 0.445, 0.423, 0.395, 0.349, 0.257, 0.169, 0.085, 0.038, 0.020)*np.sqrt(2) # current (via amperometer) Im = array(1.663, 1.664, 1.663, 1.664, 1.664, 1.664, 1.664, 1.664, 1.664, 1.664, 1.664, 1.666, 1.671, 1.679, 1.687, 1.702, 1.721, 1.798, 1.865, 1.943, 2.076, 2.327, 2.817, 3.143, 3.255, 3.294, 3.301)*1e-3*np.sqrt(2) # tension input - ground (via oscilloscope) Va = array(9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6)/2 # tension output - ground (via oscilloscope) Vb = array(4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8)/2 # add uncertainties Vb, Va = ufloat(Vb[0], 0.01), ufloat(Va[0], 0.01) Io = Vb/R # current (via oscilloscope) Vo = Va - Vb # tension drop (via oscilloscope) Z = Vo/Io # impedance plt.figure(1) plt.clf() plt.xlabel("frequency (Hz)") plt.ylabel("voltage voltmeter / oscilloscope") plt.semilogx(nu, Vm/Vo.n, 'o-', color='#bb3e5f', markersize=4.5) plt.show() plt.figure(2) plt.clf() plt.xlabel("frequency (Hz)") plt.ylabel("current amperometer / oscilloscope") plt.semilogx(nu, Io.n/Im, 'o-', color="#56ad5e", markersize=4.5) plt.show() plt.figure(3) plt.clf() plt.title('impedance (purely resistive circuit)') plt.xlabel('frequency (Hz)') plt.ylabel('magnitude (kΩ)') plt.semilogx(nu, nu/nu*Z.n/1e3, 'o-', color="#d0aa23", markersize=4.5) plt.show() alpha = check_measures(Z, R) print(mformat(''' Z: {:.3}Ω R: {:.3}Ω compatibility test: α={:.2f}, α>ε: {} ''', Z, R, alpha, alpha>epsilon)) ## ## Impedance of a capacitor ## (all SI units) C = ufloat(10.74e-9, 1e-9) # capacitor R = ufloat(996, 4) # resistor # frequency (Hz) nu = array(60, 75, 100, 150, 200, 300, 400, 500, 600, 700, 800, 1000, 1200, 1300, 1400, 1500, 1800, 2500, 5000, 10e3, 50e3, 100e3, 150e3, 200e3, 300e3, 350e3) # V input Va = array(10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2)/2 # V output Vb = array(45.0e-3, 55.2e-3, 74e-3, 106e-3, 140e-3, 212e-3, 276e-3, 344e-3, 460e-3, 520e-3, 580e-3, 700e-3, 860e-3, 920e-3, 1.05, 1.16, 1.41, 1.88, 3.60, 6.15, 9.89, 10.09, 10.16, 10.16, 10.17, 10.17)/2 # time offset Va - Vb Oab = array(4.123, 3.300, 2.480, 1.650, 1.230, 0.820, 0.611, 0.490, 0.404, 0.344, 0.302, 0.240, 0.196, 0.181, 0.167, 0.155, 0.128, 0.089, 0.040, 0.016, 0.95e-3, 0.23e-3, 0.10e-3, 0.05e-3, 0.025e-3, 0.020e-3)*(-1e-3) # time offset I - V Oiv = array(4.200e-3, 3.320e-3, 2.500e-3, 1.645e-3, 1.250e-3, 830e-6, 635e-6, 498e-6, 420e-6, 350e-6, 310e-6, 250e-6, 208e-6, 192e-6, 176e-6, 166e-6, 138e-6, 100e-6, 50e-6, 25e-6, 4.91e-6, 2.49e-6, 1.68e-6, 1230e-9, 826e-9, 720e-9)*(-1) # estimate uncertainties Evb, Eva = ufloat(Vb[0], 1e-3), ufloat(Va[0], 0.1) sigmaZ = (R*(Eva-Evb)/Evb).s sigmaH1 = ((Eva-Evb)/Evb).s sigmaH2 = ((Evb-Eva)/Evb).s om = 2*np.pi*nu # angular frequency I = Vb/R.n # output current Vab = Va - Vb # tension drop Fab = om * Oab # phase difference Vᵢ - Vₒ Fiv = om * Oiv # phase difference I - Vₒ Z = Vab/I * np.exp(1j*Fiv) # impedance H1 = Vab/Vb * np.exp(1j*Fab) # transfer function ΔV→Vb H2 = Vb/Va * np.exp(1j*Fab) # transfer function Va→Vb # plot and fit Z(ν) plt.figure(4) plt.clf() # magnitude plt.subplot(2, 1, 1) plt.title('impedance (capacitive circuit)') plt.ylabel('magnitude (kΩ)') plt.semilogx(nu, abs(Z)/1e3, 'o', color="#36913d", markersize=4.5) # fit Y=kX where Y=|Z|, X=1/ν, k=1/2πC k = simple_linear(1/nu, abs(Z), sigmaZ) Co = 1/(2*np.pi*k) f = lambda x: k.n/x x = np.arange(nu.min()-10, nu.max(), 10) plt.semilogx(x, f(x)/1e3, color='#589f22') # phase plt.subplot(2, 1, 2) plt.xlabel('frequency (Hz)') plt.ylabel('phase (rad)') plt.ylim(-1.8, -1) plt.semilogx(nu, Fiv, 'o', color="#36913d", markersize=4.5) plt.semilogx(x, x/x * -np.pi/2, color="#589f22") plt.show() phi = sample(Fiv).val() alpha = check_measures(phi, ufloat(-np.pi/2, 0)) print(mformat(''' φ: {} rad -π/2: {:.4} rad compatibility test: α={:.2f}, α>ε: {} ''', phi, -np.pi/2, alpha, alpha>epsilon)) alpha = check_measures(C, Co) beta = chi_squared_fit(nu, abs(Z), f, sigmaZ) print(mformat(''' k: {} C: {} F Cₒ: {} F compatibility test: α={:.2f}, α>ε: {} χ² test: β={:.2f}, β>ε: {} ''', k, C, Co, alpha, alpha>epsilon, beta, beta>epsilon)) # plot, fit H₁(ν) plt.figure(5) plt.clf() # magnitude plt.subplot(2,1,1) plt.title('transmission function 1') plt.ylabel('amplitude (Vout-Vin / Vout)') plt.semilogx(nu, abs(H1), 'o', color="#9b2e83", markersize=4.5) # fit Y=kX where Y=|H1|, X=1/ν, k=1/2πRC k = simple_linear(1/nu, abs(H1), sigmaH1) RCo = 1/(2*np.pi*k) f = lambda x: k.n/x x = np.arange(nu.min()-10, nu.max(), 10) plt.semilogx(x, f(x), color='#9b2e83') # phase plt.subplot(2,1,2) plt.xlabel('frequency (Hz)') plt.ylabel('phase (rad)') plt.semilogx(nu, Fab, 'o', color="#3a44ad", markersize=4.5) plt.semilogx(x, -np.pi/2+np.arctan(2*np.pi*x*R.n*C.n)) plt.show() alpha = check_measures(R*C, RCo) beta = chi_squared_fit(nu, abs(H1), f, sigmaH1) print(mformat(''' k: {} Hz RC: {} s RCₒ: {} s compatibility test: α={:.2f}, α>ε: {} χ² test: β={:.2f}, β>ε: {} ''', k, R*C, RCo, alpha, alpha>epsilon, beta, beta>epsilon)) # plot, fit H₂(ν) plt.figure(6) plt.clf() # magnitude plt.subplot(2,1,1) plt.title('transmission function 2') plt.ylabel('amplitude (Vout / Vin)') plt.semilogx(nu, abs(H2), 'o', color="#9b2e83", markersize=4.5) # fit Y=a+bX where Y=1/|H₂|², X=1/ν², a=1, b=1/(2πRC)² a,b = linear(1/nu**2, 1/abs(H2)**2, 0.01) RCo = 1/(2*np.pi*um.sqrt(b)) f = lambda x: 1/np.sqrt(1 + b.n/x**2) x = np.arange(nu.min()-10, nu.max(), 10) plt.semilogx(x, f(x), color='#9b2e83') # phase plt.subplot(2,1,2) plt.xlabel('frequency (Hz)') plt.ylabel('phase (rad)') plt.semilogx(nu, Fab, 'o', color="#3a44ad", markersize=4.5) plt.semilogx(x, -np.pi/2+np.arctan(2*np.pi*x*R.n*C.n)) plt.show() alpha = check_measures(R*C, RCo) beta = chi_squared_fit(nu, abs(H2), f, sigmaH2) print(mformat(''' b: {} RC: {} s RCₒ: {} s compatibility test: α={:.2f}, α>ε: {} χ² test: β={:.2f}, β>ε: {} ''', b, R*C, RCo, alpha, alpha>epsilon, beta, beta>epsilon))