lab-II/lab.py

352 lines
7.9 KiB
Python
Raw Normal View History

2018-03-18 18:02:21 +01:00
# coding: utf-8
from __future__ import division, unicode_literals
# special functions
from sympy.functions.special.gamma_functions import lowergamma, gamma
from sympy.functions.special.error_functions import erf
from mpmath import hyp2f1
# uncertainty propagation
from uncertainties.core import UFloat
from uncertainties import ufloat, wrap, correlated_values
import uncertainties.unumpy as unp
# fit
from numpy.polynomial.polynomial import polyfit
import sys
import collections
import types
import numpy as np
import string
##
## Variables
##
def array(*args, **kwargs):
"""
Shorthand for 1-dimensional array
"""
return np.array(args)
def uarray(err, *val):
"""
Shorthand for uncertain array with
constant uncertainty
"""
return unp.uarray(val, [err])
def nominal(x):
"""
Nominal value of n-dimensional uncertain array
"""
return unp.nominal_values(x)
def sigma(x):
"""
Uncertainty of n-dimensional uncertain array
"""
return unp.std_devs(x)
class sample(np.ndarray):
"""
Sample type (ndarray subclass)
Given a data sample outputs many statistical properties:
n: number of measures
min: minimum value
max: maximum value
mean: sample mean
med: median value
var: sample variance
std: sample standard deviation
stdm: standard deviation of the mean
"""
__array_priority__ = 2
def __new__(cls, *sample):
if isinstance(sample[0], types.GeneratorType):
sample = list(sample[0])
s = np.asarray(sample).view(cls)
return s
def __str__(self):
return format_measure(self.mean, self.stdm)
def __array_finalize__(self, obj):
if obj is None:
return
obj = np.asarray(obj)
self.n = len(obj)
self.min = np.min(obj)
self.max = np.max(obj)
self.mean = np.mean(obj)
self.med = np.median(obj)
self.var = np.var(obj, ddof=1)
self.std = np.sqrt(self.var)
self.stdm = self.std / np.sqrt(self.n)
def val(self):
"""
Gives the measure at standard 68% CL as an uncertain float (X, S/n)
"""
return ufloat(self.mean, self.stdm)
def tval(self):
"""
Gives the measure at 68% CL, calculated with the Student
t-distribution, as an uncertain float (X, tS/n)
"""
return ufloat(self.mean, t(0.68, self.n-1) * self.stdm)
##
## Normal distribution
##
def phi(x, mu, sigma):
"""
Normal CDF
computes the probability P(x<a) given X is a normally distributed
random variable with mean μ and standard deviation σ.
"""
return float(1 + erf((x-mu) / (sigma*np.sqrt(2))))/2
def p(mu, sigma, a, b=None):
"""
Normal CDF shorthand
given a normally distributed random variable X, with mean μ
and standard deviation σ, computes the probability P(a<X<b)
or P(X<a) whether b is given.
"""
if b:
return phi(b, mu, sigma) - phi(a, mu, sigma) # P(a<X<b)
return phi(a, mu, sigma) # P(x<a)
##
## χ² distribution
##
def chi(x, d):
"""
χ² CDF
given a χ² distribution with degrees of freedom
computes the probability P(x<X^2)
"""
return float(lowergamma(d/2, x/2)/gamma(d/2))
def q(x, d):
"""
χ² 1-CDF
given a χ² distribution with d degrees of freedom
computes the probability P(X^2>x)
"""
return 1 - chi(x, d)
def chi_squared(X, O, B, s=2):
"""
χ² test for a histogram
given
X: a normally distributed variable X
O: ndarray of normalized absolute frequencies
B: ndarray of bins delimiters
s: number of constraints on X
computes the probability P(χ²>χ₀²)
"""
N, M = X.n, len(O)
d = M-1-s
dX = np.diff(B)
E = [N*p(X.mean, X.std, B[k], B[k+1]) for k in range(M)]
Chi = sum((N*O*dX - E)**2/E)
return q(Chi, d)
def chi_squared_fit(X, Y, f, sigma=None, s=2):
"""
χ² test for fitted data
given
X: independent variable
Y: dependent variable
f: best fit function
s: number of constraints on the data (optional)
sigma: uncertainty on Y, number or ndarray (optional)
"""
if sigma is None:
sigma_Y = np.mean([i.std for i in Y])
else:
sigma_Y = np.asarray(sigma).mean()
Chi = sum(((Y - f(X))/sigma_Y)**2)
return q(Chi, Y.size-s)
##
## Student t-distribution
##
def t(p, n):
"""
Student's t-distribution quantile
"""
from scipy.stats import t
dist = t(n-1)
tm, tp = dist.interval(p)
return (abs(tm) + tp)/2
##
## Regressions
##
def simple_linear(X, Y, sigma_Y):
"""
Linear regression of line Y=kX
"""
sigma = np.asarray(sigma_Y).mean()
k = sum(X*Y) / sum(X**2)
sigma_k = sigma / np.sqrt(sum(X**2))
return ufloat(k, sigma_k)
def linear(X, Y, sigma_Y):
"""
Linear regression of line Y=A+BX
"""
sigma = np.asarray(sigma_Y).mean()
N = len(Y)
D = N*sum(X**2) - sum(X)**2
A = (sum(X**2)*sum(Y) - sum(X)*sum(X*Y))/D
B = (N*sum(X*Y) - sum(X)*sum(Y))/D
sigma_A = sigma * np.sqrt(sum(X**2)/D)
sigma_B = sigma * np.sqrt(N/D)
return (ufloat(A, sigma_A),
ufloat(B, sigma_B))
def polynomial(X, Y, d=2, sigma_Y=None):
"""
d-th degree polynomial fit
"""
if sigma_Y is None:
weights = None
elif isinstance(sigma_Y, collections.Iterable):
weights = 1/np.asarray(sigma_Y)
else:
weights = np.repeat(1/sigma_Y, len(X))
coeff, cov = np.polyfit(X, Y, d, w=weights,
cov=True, full=False)
return correlated_values(coeff, cov)
def curve(X, Y, f, sigmaY=None, guess=None, **kwargs):
"""
Any function fit
"""
from scipy.optimize import curve_fit
if sigmaY is None:
weights = None
elif isinstance(sigmaY, collections.Iterable):
weights = np.asarray(sigmaY)
else:
weights = np.repeat(sigmaY, len(X))
coeff, cov = curve_fit(f, X, Y, sigma=weights, p0=guess, **kwargs)
if sigmaY is None:
return lambda x: f(x, *coeff), [ufloat(i, np.nan) for i in coeff]
return lambda x: f(x, *coeff), correlated_values(coeff, cov)
##
## Misc
##
def check_measures(X1, X2):
"""
Checks whether the results of two set of measures
are compatible with each other. Gives the α-value
α=1-P(X within tσ) where t is the weighted difference
of X₁ and X₂
"""
t = np.abs(X1.n - X2.n)/np.sqrt(X1.s**2 + X2.s**2)
return float(1 - erf(t/np.sqrt(2)))
def combine_measures(*variables):
"""
Combines different (compatible) measures of the same
quantity producing a new value with a smaller uncertainty
than the individually taken ones
"""
W = np.array([1/i.s**2 for i in variables])
X = np.array([i.n for i in variables])
best = sum(W*X)/sum(W)
sigma = 1/np.sqrt(sum(W))
return ufloat(best, sigma)
def format_measure(mean, sigma):
"""
Formats a measure in the standard declaration
"""
prec = int(np.log10(abs(sigma)))
limit = 2-prec if prec < 0 else 2
sigma = round(sigma, limit)
mean = round(mean, limit)
return "{}±{}".format(mean, sigma)
class WithEmptyFormatter(string.Formatter):
int_type = (int, long) if sys.version_info < (3,) else (int)
def vformat(self, *args):
self._automatic = None
return super(WithEmptyFormatter, self).vformat(*args)
def get_value(self, key, args, kwargs):
if key == '':
if self._automatic is None:
self._automatic = 0
elif self._automatic == -1:
raise ValueError("cannot switch from manual field specification "
"to automatic field numbering")
key = self._automatic
self._automatic += 1
elif isinstance(key, int_type):
if self._automatic is None:
self._automatic = -1
elif self._automatic != -1:
raise ValueError("cannot switch from automatic field numbering "
"to manual field specification")
return super(WithEmptyFormatter, self).get_value(key, args, kwargs)
class MeasureFormatter(WithEmptyFormatter):
def format_field(self, value, format_spec):
if isinstance(value, UFloat):
return value.format(format_spec+'P')
else:
return super(MeasureFormatter, self).format_field(value, format_spec)
mformat = MeasureFormatter().format
epsilon = 0.05