lab-II/circuits/C3-?.py

189 lines
4.5 KiB
Python
Raw Normal View History

2018-03-18 18:02:21 +01:00
# coding: utf-8
from __future__ import print_function, division, unicode_literals
import numpy as np
import uncertainties.umath as um
import matplotlib.pyplot as plt
from lab import *
## Impedence of an inductor (I)
## (all SI units)
R = ufloat(996, 4) # resistor
L = ufloat(0.014561, 0.000009)
C = ufloat(10e-12, 1e-12)
# frequency
nu = array( 2e3, 10e3, 25e3, 50e3, 75e3, 100e3, 125e3, 150e3, 175e3, 200e3,
225e3, 250e3, 260e3, 270e3, 275e3, 285e3, 300e3, 350e3, 375e3)
# V input
Va = array(10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0,
10.0, 10.0, 8.2, 10.0, 10.0, 8.20, 10.0, 10.0, 10.0)/2
# V output
Vb = array( 10.0, 9.4, 7.8, 5.0, 3.28, 2.20, 1.44, 0.96, 0.56, 0.32, 0.144,
0.085, 0.0396, 0.069, 75.4e-3, 0.144, 0.194, 0.320, 0.360)/2
# time offset Va - Vb
Oab = array( 12e-6, 6.0e-6, 5.2e-6, 4.2e-6, 3.5e-6, 3.08e-6, 2.64e-6, 2.36e-6,
2.08e-6, 1.88e-6, 1.71e-6, 260e-9, 260e-9, 280e-9, 280e-9, 300e-9,
250e-9, 220e-9, 180e-9)
# time offset I - V
Oiv = array( 110e-6, 26.0e-6, 11.2e-6, 5.9e-6, 4.2e-6, 3.36e-6, 2.80e-6, 2.40e-6,
2.12e-6, 1.90e-6, 1.74e-6, 280e-9, 260e-9, 270e-9, 280e-9, 280e-9,
260e-9, 220e-9, 184e-9)
om = 2*np.pi*nu # angular frequency
I = Vb/R.n # output current
Vab = Va - Vb # tension drop
Fab = om * Oab # phase difference Vᵢ - Vₒ
Fiv = om * Oiv # phase difference I - Vₒ
Z = Vab/I * np.exp(1j*Fiv) # impedance
H1 = Vab/Vb * np.exp(1j*Fab) # transfer function ΔV→Vb
H2 = Vb/Va * np.exp(1j*Fab) # transfer function Va→Vb
# estimate uncertainties
Evb, Eva = ufloat(Vb[0], 1e-3), ufloat(Va[0], 0.1)
sigmaF = (om[0]*ufloat(Oiv[0], 3e-5)).s
sigmaZ = (R*(Eva - Evb)/Evb).s
sigmaH1 = ((Eva - Evb)/Evb).s
sigmaH2 = ((Evb - Eva)/Evb).s
# plot and fit Z(ν)
plt.figure(4)
plt.clf()
# magnitude
plt.subplot(2, 1, 1)
plt.title('impedance (RL circuit)')
plt.ylabel('magnitude (kΩ)')
plt.semilogx(nu, abs(Z)/1e3, 'o', color="#36913d", markersize=4.5)
# fit Y=kX where Y=|Z|, X=ν, k=2πL
k = simple_linear(nu, abs(Z), sigmaZ)
L = k/(2*np.pi)
f = lambda x: k.n*x
x = np.arange(nu.min()-10, nu.max(), 10)
plt.semilogx(x, f(x)/1e3, color='#589f22')
# phase
plt.subplot(2, 1, 2)
plt.xlabel('frequency (Hz)')
plt.ylabel('phase (rad)')
plt.semilogx(nu, Fiv, 'o', color="#36913d", markersize=4.5)
plt.show()
alpha = chi_squared_fit(nu, abs(Z), f, sigmaZ)
print(mformat('''
k: {}
L: {} H
χ² test:
α={:.2f}, α>ε: {}
''', k, L,
alpha, alpha>epsilon))
# plot, fit H₁(ν)
plt.figure(5)
plt.clf()
# magnitude
plt.subplot(2,1,1)
plt.title('transfer function 1')
plt.ylabel('magnitude (Vout-Vin / Vout)')
plt.semilogx(nu, abs(H1), 'o', color="#9b2e83", markersize=4.5)
# fit Y=kX where Y=|H1|, X=ν, k=2πL/R
k = simple_linear(nu, abs(H1), sigmaH1)
L = k*R/(2*np.pi)
f = lambda x: k.n/x
x = np.arange(nu.min()-10, nu.max(), 10)
plt.semilogx(x, f(x), color='#9b2e83')
# phase
plt.subplot(2,1,2)
plt.xlabel('frequency (Hz)')
plt.ylabel('phase (rad)')
plt.semilogx(nu, Fab, 'o', color="#3a44ad", markersize=4.5)
plt.show()
alpha = check_measures(R*C, RCo)
beta = chi_squared_fit(nu, abs(H1), f, sigmaH1)
print(mformat('''
k: {} Hz
RC: {} s
RCₒ: {} s
compatibility test:
α={:.2f}, α>ε: {}
χ² test:
β={:.2f}, β>ε: {}
''', k, R*C, RCo,
alpha, alpha>epsilon,
beta, beta>epsilon))
# plot, fit H₂(ν)
plt.figure(6)
plt.clf()
# magnitude
plt.subplot(2,1,1)
plt.title('transfer function 2')
plt.ylabel('magnitude (Vout / Vin)')
plt.semilogx(nu, abs(H2), 'o', color="#9b2e83", markersize=4.5)
# fit Y=a+bX where Y=1/|H₂|², X=1/ν², a=1, b=1/(2πRC)²
a,b = linear(1/nu**2, 1/abs(H2)**2, 0.01)
RCo = 1/(2*np.pi*um.sqrt(b))
f = lambda x: 1/np.sqrt(1 + b.n/x**2) # magnitude
g = lambda x: -np.pi/2 + np.arctan(2*np.pi*x*R.n*C.n) # phase
x = np.arange(nu.min()-10, nu.max(), 10)
plt.semilogx(x, f(x), color='#9b2e83')
# phase
plt.subplot(2,1,2)
plt.xlabel('frequency (Hz)')
plt.ylabel('phase (rad)')
plt.semilogx(nu, Fab, 'o', color="#3a44ad", markersize=4.5)
plt.semilogx(x, g(x))
plt.show()
alpha = check_measures(R*C, RCo)
beta = chi_squared_fit(nu, abs(H2), f, sigmaH2)
gamma = chi_squared_fit(nu, Fab, g, sigmaF)
print(mformat('''
b: {}
RC: {} s
RCₒ: {} s
compatibility test:
α={:.2f}, α>ε: {}
χ² test (magnitude):
β={:.2f}, β>ε: {}
χ² test (phase):
γ={:.2f}, γ>ε: {}
''', b, R*C, RCo,
alpha, alpha>epsilon,
beta, beta>epsilon,
gamma, gamma>epsilon))