lab-II/optics/micro.py

340 lines
8.0 KiB
Python
Raw Normal View History

2018-03-18 18:02:21 +01:00
# coding: utf-8
from __future__ import division, print_function, unicode_literals
from lab import *
import uncertainties.umath as um
import uncertainties.unumpy as unp
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
from scipy import interpolate
##
## Reflection
##
## reflection
i = array(20, 30, 40, 45, 50, 60, 70, 80) # incidency angle (deg)
r = array(321, 300, 282, 270, 261, 241, 223, 203)*(-1) + 360-i # reflection angle (deg)
# fit and plot θi - θr
x = np.linspace(10, 80, 10)
k = simple_linear(i, r, 1)
f = lambda x: k.n*x
alpha = chi_squared_fit(i, r, f, 1)
print(mformat('''
# reflection
k: {}
χ² test:
α={:.3f}
''', k, alpha))
plt.figure(1)
plt.clf()
plt.title('reflection')
plt.xlabel('incidency angle (deg)')
plt.ylabel('reflection angle (deg)')
plt.scatter(i, r, color='#003cad')
plt.plot(x, f(x), color='#0069ad')
plt.show()
##
## Refraction
##
# incidency angle
y = ufloat(5.3, 0.1)
x = ufloat(13.4, 0.1)
ti = 180/np.pi * um.atan(y/x)
# refraction angle
to = ufloat(180,1) - array(170, 168) + ti
n = to/ti
print(mformat('''
# refractive index
n₁: {} (styrene?)
n₂: {} (styrene)
t-test: α={:.2f}
''', n[0], n[1], check_measures(*n)))
##
## Brewster angle
##
# current, amplification factor, angle
data = array(
(0.08, 3, 5),
(0.10, 10, 10),
(0.12, 3, 15),
(0.38, 10, 20),
(0.64, 10, 25),
(0.62, 10, 30),
(0.64, 10, 35),
(0.44, 10, 40),
(0.34, 10, 45),
(0.38, 3, 50),
(0.36, 3, 55),
(0.32, 1, 60),
(0.08, 1, 65))
t = data[:,2]*np.pi/180 # angle
I = data[:,0]*data[:,1] # normalized current
sI = 0.02*data[:,1] # normalized error
# plot Ι - θ
plt.title('Brewster\'s angle')
plt.xlabel('incidency angle (rad)')
plt.ylabel('vertical polarization intensity (mA)')
plt.ylim(0, 8)
plt.scatter(t, I, color='#109d1d')
plt.errorbar(t, I, yerr=sI, linestyle='', color='#0c7616')
plt.show()
##
## Polarization - Malus Law
##
## distance 1
d = (104.8 - 20 + 13.5)*1e-2 # transmitter - receiver distance (m)
y = array(0, 15, 30, 45, 60, 90, 105, 120, 135, 150, 180) # receiver angle (deg)
I = array(0.120, 0.100, 0.080, 0.050, 0.020, 0.000, 0.010, 0.020, 0.045, 0.100, 0.120) # current (mA)
# fit, plot γ - I, with I = I₀cos(γ²)
x = np.arange(0,180,1)
k = simple_linear(np.cos(np.pi/180*y)**2, I, 0.01)
f = lambda x: k.n*np.cos(np.pi/180*x)**2
alpha = chi_squared_fit(y, I, f, 0.01, s=1)
print(mformat('''
# malus law
## at d={}m
I₀: {}
χ² test:
α={:.3f}''', d, k, alpha))
plt.figure(2)
plt.title('malus law')
plt.xlabel('horizontal angle (deg)')
plt.ylabel('intensity')
plt.xlim(0,180)
plt.ylim(0,0.2)
plt.scatter(y, I, color='#d6a800')
plt.plot(x, f(x), color='#e9b700')
## distance 2
d = (78.3 - 34.7 + 13.5)*1e-2 # transmitter - receiver angle (m)
y = array(0, 15, 30, 45, 60, 90, 105, 120, 135, 150, 180) # receiver angle (deg)
I = array(0.175, 0.160, 0.120, 0.065, 0.035, 0.000, 0.010, 0.045, 0.085, 0.130, 0.175) # current (mA)
k = simple_linear(np.cos(np.pi/180*y)**2, I, 0.01)
f = lambda x: k.n*np.cos(np.pi/180*x)**2
alpha = chi_squared_fit(y, I, f, 0.01, s=1)
print(mformat('''
## at d={}m
I₀: {}
χ² test:
α={:.3f}''', d, k, alpha))
plt.scatter(y, I, color='#178200')
plt.plot(x, f(x), color='#1ead00')
## distance 3
d = (69.2 - 34.7 + 13.5)*1e-2 # transmitter - receiver angle (m)
y = array(0, 15, 30, 45, 60, 90, 105, 120, 135, 150, 180) # receiver angle (deg)
I = array(0.200, 0.180, 0.160, 0.085, 0.045, 0.000, 0.010, 0.050, 0.090, 0.150, 0.200) # current
k = simple_linear(np.cos(np.pi/180*y)**2, I, 0.01)
f = lambda x: k.n*np.cos(np.pi/180*x)**2
alpha = chi_squared_fit(y, I, f, 0.01, s=1)
print(mformat('''
## at d={}m
I₀: {}
χ² test:
α={:.3f}
''', d, k, alpha))
plt.scatter(y, I, color='#003cad')
plt.plot(x, f(x), color='#0069ad')
plt.show()
## polarizer
t = array(0, 45, 90)
V = array(0.185, -0.080, -0.04)
##
## Standing waves
##
# receiver position from transmitter (m)
d = np.arange(30, 86.5, 0.5)*1e-2
# tension (V)
V = array(0.851, 1.019, 1.971, 0.810, 1.116, 1.591, 0.820, 1.064, 1.448, 0.804,
1.196, 0.953, 0.772, 1.319, 0.846, 0.773, 1.211, 0.761, 0.806, 1.143,
0.810, 1.049, 0.629, 0.785, 0.985, 0.571, 0.837, 0.816, 0.563, 0.867,
0.739, 0.551, 0.839, 0.638, 0.542, 0.796, 0.586, 0.541, 0.828, 0.535,
0.544, 0.678, 0.556, 0.833, 0.546, 0.537, 0.790, 0.480, 0.511, 0.705,
0.451, 0.504, 0.637, 0.437, 0.524, 0.574, 0.422, 0.519, 0.525, 0.413,
0.517, 0.476, 0.396, 0.499, 0.416, 0.379, 0.474, 0.369, 0.371, 0.433,
0.319, 0.358, 0.383, 0.275, 0.345, 0.335, 0.245, 0.327, 0.297, 0.227,
0.326, 0.264, 0.224, 0.322, 0.258, 0.235, 0.328, 0.242, 0.253, 0.341,
0.232, 0.249, 0.315, 0.199, 0.239, 0.264, 0.173, 0.236, 0.227, 0.143,
0.221, 0.188, 0.125, 0.206, 0.162, 0.112, 0.193, 0.130, 0.109, 0.193,
0.119, 0.111, 0.172)
# plot
plt.figure(5)
plt.viridis()
plt.title('standing waves')
plt.xlabel('receiver position (m)')
plt.ylabel('tension (V)')
plt.xlim(0.28,0.87)
# mark peaks
mins = signal.argrelextrema(V, np.less)[0]
maxs = signal.argrelextrema(V, np.greater)[0]
plt.scatter(d[mins], V[mins], marker='X', color='#d8a300')
plt.scatter(d[maxs], V[maxs], marker='X', color='#1ead00')
# spline interpolation
x = np.arange(d.min(), d.max(), 5e-4)
plt.plot(x, interpolate.spline(d, V, x), color='#0069ad')
plt.show()
# calculate wavelength
l1 = 2*np.diff(d[maxs]).mean()
l2 = 2*np.diff(d[mins]).mean()
l = ufloat((l1 + l2)/2, 0.005)
print(mformat('''
# standing waves
λ: {} m
''', l))
##
## Double slit
##
t = 102+0.05*7 # total width (mm)
s = 20+0.05*9 # slits width (mm)
d = (t-s)*1e-3 # slits spacing (m)
# maxima order
n = array(1, 2, 3)
# peaks (right side)
r = array(200, 223, 262)*np.pi/180 - np.pi # 194, 204, 222
# peaks (left side)
l = np.pi - array(160, 136, 98)*np.pi/180 #166, 155, 137
# calculate wavelength
l = sample(*np.append(np.sin(r)/n, np.sin(l)/n)*d)
print(mformat('''
# double slit interference
λ: {} m
''', l.tval()))
##
## lloyd mirror
##
a = 37.5e-2 # transmitter position (from axis)
b = 32.5e-2 # receiver position (from axis)
m = 11.0e-2 # reflector position (first minimum)
h = array(14.4, 17.8, 20.8, 23.5)*1e-2 # reflector position (maxima)
# calculate wavelength (first distance)
n = 1 + np.arange(1, len(h)+1)
l1 = sample(*(np.sqrt(a**2 + h**2) + np.sqrt(b**2 + h**2) - (a+b))/n).tval()
a = 27.5e-2 # transmitter position (from axis)
b = 27.5e-2 # receiver position (from axis)
m = 9.5e-2 # reflector position (first minimum)
h = array(12.6, 15.8, 18.4, 20.1)*1e-2 # reflector position (maxima)
# calculate wavelength (second distance)
n = 1 + np.arange(1, len(h)+1)
l2 = sample(*(np.sqrt(a**2 + h**2) + np.sqrt(b**2 + h**2) - (a+b))/n).tval()
print(mformat('''
# lloyd mirror interference
λ₁: {} m
λ₂: {} m
compatibility test: α={:.3f}
λbest: {} m
''', l1, l2, check_measures(l1, l2), combine_measures(l1, l2)))
##
## Fabry-Perot
##
# reflection relative position (maxima)
m = array(19.4, 20.9, 22.3, 23.8, 25.3, 26.7, 28.0, 29.3, 30.7, 32.2)*1e-2
# calculate wavelength
l = sample(*np.diff(m)*2)
print(mformat('''
# fabry-perot interferometer
λ: {} m
''', l.tval()))
##
## Michelson
##
# interferometer arms length (m)
l1 = 0.307
l2 = 0.423
l3 = 0.246
# reflector position (m)
d = array(0.092, 0.106, 0.120, 0.133, 0.150, 0.165, 0.180, 0.194,
0.220, 0.235, 0.245, 0.260, 0.276, 0.290, 0.305, 0.322,
0.338, 0.347, 0.360, 0.376, 0.392, 0.410)
# fit and plot n - d
n = np.arange(len(d))
a,b = linear(n, d, 2e-3)
f = lambda x: a.n + b.n*x
alpha = chi_squared_fit(n, d, f, 4e-3)
print(mformat('''
# michelson interferometer
λ: {} m
χ² test: α={:.3f}
''', 2*b, alpha))
plt.figure(3)
plt.title('michelson interferometer')
plt.xlabel('n-th maximum')
plt.ylabel('reflector position (m)')
plt.scatter(n, d, color='#178200')
plt.plot(n, f(n), color='#1ead00')
plt.show()