lab-II/optics/interf.py

149 lines
3.1 KiB
Python
Raw Permalink Normal View History

2018-03-18 18:02:21 +01:00
# coding: utf-8
from __future__ import division, print_function, unicode_literals
from lab import *
import uncertainties.umath as um
import uncertainties.unumpy as unp
import numpy as np
import matplotlib.pyplot as plt
# convert micrometer readings to SI unit
length = lambda x,y,z: x*1e-4 + y*1/4*1e-4 + z*1e-6
##
## Part I
##
k = 60 # number of wavefronts
l0 = ufloat(633, 1)*1e-9 # laser wavelength
# micrometer calibration
d0 = k*l0/2 # expected value
d = length(0,3,10) # measured value
df = d - d0 # offset
# laser wavelength measure
d = sample(length(*i)-df.n for i in [(0,3,9.5), (0,3,10),
(0,3,10.5), (0,3,10)]).tval()
l1 = 2*d/k
print(mformat('''
# Part I (Fabry-Perot interferometer)
offset: {} μm
λ: {} nm
''', df*1e6, l1*1e9))
##
## Part II
##
df = length(2,0,1) # micrometer offset
k = 70 # number of wavefronts
# laser wavelength measure
d = sample(length(*i)-df for i in [(2,0,22.5), (2,0,23.5), (2,0,23.5),
(2,0,23.5), (2,0,23), (2,0,23)]).tval()
l2 = 2*d/k
print(mformat('''
# Part II (Michelson interferometer)
λ: {} nm''', l2*1e9))
## compare wavelengths
alpha = check_measures(l1, l2)
l = combine_measures(l1, l2)
print(mformat('''
comparibility test λ₁ - λ₂
α={:.2f} α>ε: {}
λbest: {} nm
''', alpha, alpha>epsilon, l*1e9))
##
## Part III
##
d = 3e-2 # air cavity thickness
Patm = 101.3e3 # atmosferic pressure
k = array(17, 20, 17, 18, 19) # number of wavefronts
P = array(82e3, 83e3, 84e3, 83e3, 84e3) # gauge pressure
m = sample(*(k*l.n/(2*d*P)))
print(mformat('''
# Part III (air refraction index)
m: {} Pa¹
''', m.tval()))
##
## Part IV
##
d = ufloat(6, 1)*1e-3 # glass pane thickness
t = ufloat(12, 1)*np.pi/180 # angle
k = sample(162, 112, 124, 122).tval() # number of wavefronts
n = (2*d-k*l) / (2*d-k*l/(1-um.cos(t))) # refraction index
print(mformat('''
# Part IV (glass refraction index)
n: {}
''', n))
##
## Part V
##
# peak position
S = array(8.9, 10.7, 11.7, 12.7, 13.4,
14.1, 14.7, 15.6, 16.3, 16.7,
17.3, 18.0, 18.3, 18.9)*1e-2
# uncertainty
sigmaS = 2e-3
# peak number
n = np.arange(1, len(S))
d = ufloat(1e-3, 0) # slit length
L = ufloat(125.1, 0.5)*1e-2 # screen distance
ti = um.atan(S[0]/L) # incidence angle
# drop first peak
S = S[1:]
x = np.linspace(0, 13, 200)
peak = lambda n, t, l: L.n*np.sqrt(1/(np.cos(t)-n*l/d.n)**2 - 1)
f, (tio, lo) = curve(n, S, peak, sigmaS, guess=[ti.n, l.n])
plt.xlabel('peak order')
plt.ylabel('distance from center (m)')
plt.errorbar(n, S, sigmaS, color='#604848', linestyle='', linewidth=1.1)
plt.scatter(n, S, color='#a17e3e')
plt.plot(x, f(x), color='#65788f')
plt.show()
alpha = check_measures(l, lo)
beta = chi_squared_fit(n, S, f, sigmaS)
print(mformat('''
# Part V (ruler diffraction)
λₒ: {} nm
θₒ: {} rad
compatibility test λ - λₒ:
α={:.2f}, α>ε: {}
χ² test:
α={:.2f}, α>ε: {}
''', lo*1e9, tio
, alpha, alpha>epsilon
, beta, beta>epsilon))