add new proof
This commit is contained in:
parent
9d3ec1d2ad
commit
3714f048cf
@ -170,10 +170,15 @@ plus_assoc (SS a) b c = cong SS (plus_assoc a b c)
|
|||||||
|
|
||||||
-- | Commutative property of addition
|
-- | Commutative property of addition
|
||||||
plus_commut ∷ Sℕ n → Sℕ m → (n :+ m) :≡ (m :+ n)
|
plus_commut ∷ Sℕ n → Sℕ m → (n :+ m) :≡ (m :+ n)
|
||||||
plus_commut n SZ = plus_right_id n
|
plus_commut n SZ = plus_right_id n
|
||||||
plus_commut n (SS m) =
|
plus_commut n (SS m) =
|
||||||
sym (succ_right n m) ∾ cong SS (plus_commut n m) ∾ succ_left m n
|
sym (succ_right n m) ∾ cong SS (plus_commut n m) ∾ succ_left m n
|
||||||
|
|
||||||
|
-- | Left identity of multiplication
|
||||||
|
cross_left_id ∷ Sℕ n → (S Z) :× n :≡ n
|
||||||
|
cross_left_id SZ = Refl
|
||||||
|
cross_left_id (SS n) = cong SS (cross_left_id n)
|
||||||
|
|
||||||
-- | Minimum of itself
|
-- | Minimum of itself
|
||||||
min_self ∷ Sℕ n → Min n n :≡ n
|
min_self ∷ Sℕ n → Min n n :≡ n
|
||||||
min_self SZ = Refl
|
min_self SZ = Refl
|
||||||
|
Loading…
Reference in New Issue
Block a user