diff --git a/src/Data/Nat.hs b/src/Data/Nat.hs index e2023a5..532645a 100644 --- a/src/Data/Nat.hs +++ b/src/Data/Nat.hs @@ -16,12 +16,10 @@ module Data.Nat where import Relation.Equality import Data.Bool -import Data.Integer (Integer) -import Data.Function (id, const, (∘)) -import Data.TypeClass (Eq, Show, Num, Enum, Bounded) +import Data.Integer +import Data.Function import Data.Singletons.TH hiding ((:<), (:>), (%:<), Refl, Min, sMin, Max, sMax) - -import qualified Data.TypeClass as T +import Data.TypeClass as T singletons [d| @@ -29,7 +27,6 @@ singletons [d| data ℕ ∷ ★ where Z ∷ ℕ -- ^ Zero S ∷ ℕ → ℕ -- ^ Successor - deriving (Eq, Show) infixl 6 + infixl 7 × @@ -86,37 +83,40 @@ singletons [d| fact (S n) = (S n) × (fact n) |] +deriving instance Eq ℕ + +deriving instance Show ℕ instance Num ℕ where - (+) = (+) - (-) = (-) - (*) = (×) + (+) = (Data.Nat.+) + (-) = (Data.Nat.-) + (*) = (Data.Nat.×) abs = id signum = const 1 negate = id - fromInteger = fromInteger + fromInteger = _ℤtoℕ instance Enum ℕ where - toEnum = fromInteger ∘ T.toInteger - fromEnum = T.fromInteger ∘ toInteger + toEnum = _ℤtoℕ ∘ T.toInteger + fromEnum = T.fromInteger ∘ _ℕtoℤ instance Bounded ℕ where minBound = Z maxBound = (∞) --- | Convert a natural into an 'Integer' -toInteger ∷ ℕ → Integer -toInteger Z = 0 -toInteger (S n) = 1 T.+ toInteger n +-- | Convert a natural into an integer +_ℕtoℤ ∷ ℕ → ℤ +_ℕtoℤ Z = 0 +_ℕtoℤ (S n) = 1 T.+ _ℕtoℤ n --- | Convert an 'Integer' into a natural -fromInteger ∷ Integer → ℕ -fromInteger 0 = Z -fromInteger n - | n T.<= 0 = 0 - | n T.> 0 = S (fromInteger (T.pred n)) +-- | Convert an integer into a natural +_ℤtoℕ ∷ ℤ → ℕ +_ℤtoℕ 0 = Z +_ℤtoℕ n + | n T.<= 0 = Z + | n T.> 0 = S (_ℤtoℕ (T.pred n)) -- | Infinity diff --git a/src/Data/TypeClass.hs b/src/Data/TypeClass.hs index 5bb0ceb..ce8a8ae 100644 --- a/src/Data/TypeClass.hs +++ b/src/Data/TypeClass.hs @@ -1,10 +1,13 @@ +{-# LANGUAGE UnicodeSyntax #-} +{-# LANGUAGE RebindableSyntax #-} + -- | Exports haskell built-in typeclasses module Data.TypeClass ( Eq(..) , Ord(..) , Enum(..) , Bounded(..) - , Num(..) + , Num(..), (×) , Integral(..) , Show(..) , Read(..) @@ -17,3 +20,10 @@ import GHC.Show import GHC.Read import GHC.Num import GHC.Exts +import Prelude (Eq(..), Ord(..), Integral(..)) + +-- * Aliases + +-- | Multiplication +(×) ∷ Num a ⇒ a → a → a +(×) = (*) diff --git a/src/Data/Vec.hs b/src/Data/Vec.hs index cae01ba..489c3c1 100644 --- a/src/Data/Vec.hs +++ b/src/Data/Vec.hs @@ -8,10 +8,9 @@ {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE UndecidableInstances #-} -{-# LANGUAGE TemplateHaskell #-} -{-# LANGUAGE QuasiQuotes #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE UnicodeSyntax #-} +{-# LANGUAGE RebindableSyntax #-} -- | Defines a vector type, analogous to a list, that achieves -- type-safe operation like resizing and concatenation by using @@ -20,14 +19,14 @@ module Data.Vec where import Relation.Equality (gcastWith) import Data.Kind (Type) -import Data.Nat +import Data.Nat hiding ((+), (-), (×), min, max) import Data.Bool +import Data.Maybe (Maybe(..)) import Data.Char (Char) import Data.Function ((∘)) -import Data.TypeClass (Show, Eq, Ord, Num, IsList, IsString) import Data.Singletons (SingI, sing) -import qualified Data.TypeClass as T +import Data.TypeClass infixr 5 :- @@ -45,12 +44,12 @@ type String n = Vec Char n deriving instance Eq a ⇒ Eq (Vec a n) instance Show a ⇒ Show (Vec a n) where - showsPrec d = T.showsPrec d ∘ toList + showsPrec d = showsPrec d ∘ vecToList instance SingI n ⇒ IsList (Vec a n) where type Item (Vec a n) = a - fromList = fromList - toList = toList + fromList = listToVec + toList = vecToList instance SingI n ⇒ IsString (String n) where fromString = fromList @@ -60,9 +59,9 @@ instance SingI n ⇒ IsString (String n) where -- * Conversions -- | Convert a 'Vec' into a List -toList ∷ Vec a n → [a] -toList Nil = [] -toList (x :- xs) = x : toList xs +vecToList ∷ Vec a n → [a] +vecToList Nil = [] +vecToList (x :- xs) = x : vecToList xs -- | Convert a List into a 'Vec' @@ -70,8 +69,8 @@ toList (x :- xs) = x : toList xs -- It's not possible to convert an infinite list to a vector -- as haskell does not permit constructing infinite type, -- which the resulting vector length would be. -fromList ∷ SingI n ⇒ [a] → Vec a n -fromList = f sing +listToVec ∷ SingI n ⇒ [a] → Vec a n +listToVec = f sing where f ∷ Sℕ n → [a] → Vec a n f SZ _ = Nil f (SS n) (x:xs) = x :- f n xs @@ -278,24 +277,27 @@ all p (x :- xs) = and (map p (x :- xs)) -- | The least element of a vector. minimum ∷ Ord a ⇒ Vec a (S n) → a -minimum = foldr₁ T.min +minimum = foldr₁ min -- | The largest element of a vector. maximum ∷ Ord a ⇒ Vec a (S n) → a -maximum = foldr₁ T.max +maximum = foldr₁ max -- | The 'sum' function computes the sum of the numbers of a vector. sum ∷ Num a ⇒ Vec a n → a -sum = foldr (T.+) 0 +sum = foldr (+) 0 -- | The 'product' function computes the product of the numbers of a vector. product ∷ Num a ⇒ Vec a n → a -product = foldr (T.*) 0 +product = foldr (×) 1 +-- * Subvectors +-- Extracting subvectors + -- | 'take' returns the first @n@ element of the vector take ∷ ∀ a n m. SingI n ⇒ Vec a m → Vec a n take = take' (sing ∷ Sℕ n)