From 2430dc0b6559dfa40b92edce1321d857ea603932 Mon Sep 17 00:00:00 2001 From: Michele Guerini Rocco Date: Fri, 6 Jun 2014 15:11:13 -0400 Subject: [PATCH] fix table --- index.md | 14 +++++++------- main.css | 44 ++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 51 insertions(+), 7 deletions(-) diff --git a/index.md b/index.md index 80338c6..d9d3990 100644 --- a/index.md +++ b/index.md @@ -237,13 +237,13 @@ Un poliedro si dice regolare quando le sue facce sono poligoni regolari congruen I poliedri regolari o solidi platonici sono 5: tetraedro, esaedro o cubo, ottaedro, dodecaedro e icosaedro. -| Poliedro | facce | vertici | spigoli | superfice | volume | -| ------------------------------------------- | ----- | ------- | ------- | ---------------------------------- | -----------------------------| -| ![tetraedro](images/tetraedro) tetraedro | 4 | 4 | 6 | $s^2 sqrt{3}$ | $frac{1}{12}s^3 sqrt{2}$ | -| ![esaedro](images/esaedro) esaedro | 6 | 8 | 12 | $6s^2$ | $s^3$ | -| ![ottaedro](images/ottaedro) ottaedro | 8 | 6 | 12 | $2s^2 sqrt{3}$ | $frac{1}{3}s^3 sqrt{2}$ | -| ![dodecaedro](images/dodecaedro) dodecaedro | 12 | 20 | 30 | $15s^2 sqrt{frac{5+2 sqrt{5}}{5}}$ | $s^3 frac{15+7sqrt{15}}{4}$ | -| ![icosaedro](images/icosaedro) icosaedro | 20 | 12 | 30 | $s^2 5sqrt{3}$ | $s^3 frac{5(3+sqrt{5})}{12}$ | +| Poliedro | facce | vertici | spigoli | superfice | volume | +| ----------------------------------------------- | ----- | ------- | ------- | ------------------------------------ | -------------------------------| +| ![tetraedro](images/tetraedro.jpg) tetraedro | 4 | 4 | 6 | $s^2 \sqrt{3}$ | $\frac{1}{12}s^3\sqrt{2}$ | +| ![esaedro](images/esaedro.jpg) esaedro | 6 | 8 | 12 | $6s^2$ | $s^3$ | +| ![ottaedro](images/ottaedro.png) ottaedro | 8 | 6 | 12 | $2s^2 \sqrt{3}$ | $\frac{1}{3}s^3\sqrt{2}$ | +| ![dodecaedro](images/dodecaedro.png) dodecaedro | 12 | 20 | 30 | $15s^2 \sqrt{\frac{5+2\sqrt{5}}{5}}$ | $s^3 \frac{15+7\sqrt{15}}{4}$ | +| ![icosaedro](images/icosaedro.png) icosaedro | 20 | 12 | 30 | $s^2 5\sqrt{3}$ | $s^3 \frac{5(3+\sqrt{5})}{12}$ | # Solidi di rotazione I solidi di rotazione sono figure solide ottenute dalla rotazione completa di un poligono attorno ad una retta. diff --git a/main.css b/main.css index 5a22179..79f1343 100644 --- a/main.css +++ b/main.css @@ -43,6 +43,50 @@ img { border-radius: 5px; } +td > img { + border: none; + width: 5em; +} + +table { + padding: 0; + width: 35em; +} + +table tr { + border-top: 1px solid #cccccc; + background-color: white; + margin: 0; + padding: 0; +} + +table tr:nth-child(2n) { + background-color: #f8f8f8; +} + +table tr th { + font-weight: bold; + border: 1px solid #cccccc; + text-align: left; + margin: 0; + padding: 6px 13px; +} + +table tr td { + border: 1px solid #cccccc; + text-align: left; + margin: 0; + padding: 6px 13px +} + +table tr th :first-child, table tr td :first-child { + margin-top: 0; +} + +table tr th :last-child, table tr td :last-child { + margin-bottom: 0; +} + #container { width: 38em; margin: 2em;