Lab-I/viscosita.py
2016-06-19 20:37:57 +02:00

167 lines
4.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#coding: utf8
from __future__ import print_function, division, unicode_literals
from lab import *
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import numpy as np
import matplotlib
##
## Parte 1
##
# misure
M = sample(0.5096,0.5100,0.5090,0.5095,0.5096,0.5102,0.5104,0.5103) # massa (g)
D = sample(4.45,4.46,4.47,4.47,4.47,4.47,4.47,4.46) # diametro (mm)
T0 = sample(2.43,2.28,2.46,2.42,2.46,2.44,2.32,2.29) # time at 20cm, 22°C
T1 = sample(0.39,0.46,0.42,0.41,0.41,0.43,0.37,0.44,0.39) # time at 5cm, 22°C
T = sample(2.13,2.29,2.44,2.25,2.29,2.19,2.19,2.07,2.25, # time at 20cm, 24°C
2.14,2.29,2.27,2.25,2.10,2.11,2.12,2.26,2.03,
2.10,2.18,2.28,2.29,2.13,2.14,2.17,2.24,2.33,
2.04,2.06,2.12,2.17,1.97,1.97,2.14,2.07,2.22,
2.05,1.87,2.14,2.21,1.89,2.32,2.23,2.14,2.07,
2.04,2.00,2.14,1.96,2.40,2.22,2.04,2.16,2.01,
2.08,2.03,2.04,2.09,2.30,2.09,2.14,1.92,2.01,
2.27,2.26,2.19,2.19,2.07,1.94,2.00,1.87,2.20,
2.02,1.95,2.03,2.27,2.14,1.92,1.94,1.94,2.07,
1.82,1.88,1.86,2.13,2.05,2.20,1.92,2.09,2.34,
2.36,2.24,2.24,2.20,2.07,2.35,2.20,2.13,2.10,2.12)
# compare velocity 5cm - 20cm
V0 = 0.200/T0.to_ufloat()
V1 = 0.050/T1.to_ufloat()
alpha = check_measures(V0, V1)
print('''
v_20cm: ({})m/s
v_5cm: ({})m/s
Χ²: α={:.5f}, α>ε: {}
'''.format(V0, V1, alpha, alpha>epsilon))
# times histogram
plt.figure(1)
plt.xlabel('tempo di caduta da 20cm (s)')
plt.ylabel('frequenza\'')
plt.xlim(1.80, 2.46)
# gaussian best fit
t = np.linspace(1.80, 2.45, 100)
gauss = mlab.normpdf(t, T.mean, T.std)
plt.plot(t, gauss, 'black', linewidth=1)
O, B, _ = plt.hist(T, bins=6, normed=1, facecolor='#506d72')
plt.show()
# χ² test histogram
alpha = chi_squared(T, O, B)
print('χ²: α={:.3f}, α>ε: {}'.format(alpha, alpha>epsilon))
# velocity
V = 0.200/T.to_ufloat()
# results
print("""
m: ({})g
d: ({})mm
T: ({})s
v: ({})m/s
""".format(M, D, T, V))
##
## Part 2
##
# masses
M = [
sample(0.0323,0.0326,0.0325,0.0327,0.0328) #2mm
, sample(0.1102,0.1101,0.1103,0.1102,0.1100) #3mm
, sample(0.2611,0.2610,0.2610,0.2607,0.2612,0.2610,0.2610) #4mm
, sample(0.5096,0.5099,0.5101,0.5096,0.5089,0.5099,0.5093,0.5093) #5mm
, sample(0.8808,0.8802,0.8802,0.8795) #6mm
]
# diameters
D = [
sample(1.98,1.99,2.00,2.00,1.99) #2mm
, sample(2.99,3.00,3.00,2.99,3.00) #3mm
, sample(3.99,3.99,3.99,4.00,4.00,4.00,3.99) #4mm
, sample(4.99,5.00,4.99,5.00,4.99,5.00,4.99) #5mm
, sample(6.00,6.00,5.99,5.99) #6mm
]
# time to fall (20cm)
T = [
sample(16.69,17.07,16.83,16.74,16.02,16.83,17.07,16.40,16.77,16.43,
16.82,16.93,16.98,16.81,16.54,16.57,16.54,16.41,16.48,16.62) #2mm
, sample(7.87,7.70,7.85,7.79,7.76,7.93,7.90,7.72,8.09,7.73,
7.65,7.86,7.96,7.99,8.04,7.76,7.86,7.75,7.91,7.86) #3mm
, sample(4.57,4.63,4.39,4.46,4.61,4.64,4.58,4.56,4.53,4.63,
4.48,4.72,4.63,4.88,4.53,4.82,4.58,4.70,4.39,4.43) #4mm
, sample(3.25,3.31,3.43,3.30,3.35,3.31,3.30,3.35,3.37,3.26,
3.31,3.18,3.19,3.27,3.21,3.48,3.22,3.13,3.25,3.29) #5mm
, sample(2.68,2.60,2.58,2.59,2.53,2.50,2.60,2.53,2.38,2.63,
2.43,2.57,2.48,2.41,2.53,2.55,2.42,2.46,2.43,2.56,2.50) #6mm
]
m = 0.001*ufloat(M[4].mean, M[4].std) # sample for density calculation
d = 0.001*ufloat(D[4].mean, D[4].std)
SV = sample(0.200/i.mean*i.std for i in T) #uncertainty on V (≈all identical)
V = sample(0.200/i.mean for i in T) #limit velocity (m/s)
R = sample(0.001*i.mean/2 for i in D) #radii (m)
Rmm = sample(i.mean/2 for i in D) #radii (mm)
k = simple_linear(Rmm**2, V, SV)
f = lambda x: k.n*x
g = lambda x: k.n*x**2
# plot R - V
plt.figure(2)
plt.xlabel('raggio (mm)')
plt.ylabel('velocita\' terminale (m/s)')
plt.xlim(0, 4)
plt.ylim(0, 0.10)
x = np.linspace(0, Rmm.max**2, 100)
plt.plot(x, map(g, x), color='#973838')
plt.scatter(Rmm, V, color='#92182b')
plt.show()
# plot R² - V
plt.figure(3)
plt.xlabel('raggio (mm)^2')
plt.ylabel('velocita\' terminale (m/s)')
plt.xlim(0, 10)
plt.ylim(0, 0.10)
plt.plot(x, map(f, x), color='#286899')
plt.scatter(Rmm**2, V)
plt.errorbar(Rmm**2, V, yerr=SV, color='#3a3838', linestyle='')
plt.show()
#linear fit R² - V
k = simple_linear(R**2, V, SV)
f = lambda x: k.n*x
# χ² test for linear fit
alpha = chi_squared_fit(R**2, V, f, SV)
print('''
χ²: α={}
k: ({})1/m*s
'''.format(alpha, k))
# calculate eta
rho_s = m/(4/3* np.pi * (d/2)**3)
rho_g = ufloat(1261, 0)
g = ufloat(9.81, 0)
eta = 2/9*g*(rho_s-rho_g)/k
print('''
ρ: ({})kg/m³
η: ({})Pa*s
'''.format(rho_s, eta))