Lab-I/lab.py
2016-06-19 20:37:57 +02:00

234 lines
5.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding: utf-8
from __future__ import division, unicode_literals
from sympy.functions.special.gamma_functions import lowergamma, gamma
from sympy.functions.special.error_functions import erf
from uncertainties.core import UFloat
from uncertainties import ufloat, wrap, correlated_values
from numpy.polynomial.polynomial import polyfit
import collections
import types
import numpy as np
import string
##
## Variables
##
class sample(np.ndarray):
"""
Sample type (ndarray subclass)
Given a data sample outputs many statistical properties:
n: number of measures
min: minimum value
max: maximum value
mean: sample mean
med: median value
var: sample variance
std: sample standard deviation
stdm: standard deviation of the mean
"""
__array_priority__ = 2
def __new__(cls, *sample):
if isinstance(sample[0], types.GeneratorType):
sample = list(sample[0])
s = np.asarray(sample).view(cls)
return s
def __str__(self):
return format_measure(self.mean, self.stdm)
def __array_finalize__(self, obj):
if obj is None:
return
obj = np.asarray(obj)
self.n = len(obj)
self.min = np.min(obj)
self.max = np.max(obj)
self.mean = np.mean(obj)
self.med = np.median(obj)
self.var = np.var(obj, ddof=1)
self.std = np.sqrt(self.var)
self.stdm = self.std / np.sqrt(self.n)
def to_ufloat(self):
return ufloat(self.mean, self.stdm)
##
## Normal distribution
##
def phi(x, mu, sigma):
"""
Normal CDF
computes the probability P(x<a) given X is a normally distributed
random variable with mean μ and standard deviation σ.
"""
return float(1 + erf((x-mu) / (sigma*np.sqrt(2))))/2
def p(mu, sigma, a, b=None):
"""
Normal CDF shorthand
given a normally distributed random variable X, with mean μ
and standard deviation σ, computes the probability P(a<X<b)
or P(X<a) whether b is given.
"""
if b:
return phi(b, mu, sigma) - phi(a, mu, sigma) # P(a<X<b)
return phi(a, mu, sigma) # P(x<a)
def chi(x, d):
"""
χ² CDF
given a χ² distribution with degrees of freedom
computes the probability P(X^2x)
"""
return float(lowergamma(d/2, x/2)/gamma(d/2))
def q(x, d):
"""
χ² 1-CDF
given a χ² distribution with d degrees of freedom
computes the probability P(X^2>x)
"""
return 1 - chi(x, d)
def chi_squared(X, O, B, s=2):
"""
χ² test for a histogram
given
X: a normally distributed variable X
O: ndarray of normalized absolute frequencies
B: ndarray of bins delimiters
s: number of constraints on X
computes the probability P(χ²>χ₀²)
"""
N, M = X.n, len(O)
d = M-1-s
delta = (X.max - X.min)/M
E = [N*p(X.mean, X.std, B[k], B[k+1]) for k in range(M)]
Chi = sum((O[k]/delta - E[k])**2/E[k] for k in range(M))
return q(Chi, d)
def chi_squared_fit(X, Y, f, sigma=None, s=2):
"""
χ² test for fitted data
given
X: independent variable
Y: dependent variable
f: best fit function
s: number of constraints on the data (optional)
sigma: uncertainty on Y, number or ndarray (optional)
"""
if sigma is None:
sigma_Y = np.mean([i.std for i in Y])
else:
sigma_Y = np.asarray(sigma).mean()
Chi = sum(((Y - f(X))/sigma_Y)**2)
return q(Chi, Y.size-s)
##
## Regressions
##
def simple_linear(X, Y, sigma_Y):
"""
Linear regression of line Y=kX
"""
sigma = np.asarray(sigma_Y).mean()
k = sum(X*Y) / sum(X**2)
sigma_k = sigma / np.sqrt(sum(X**2))
return ufloat(k, sigma_k)
def linear(X, Y, sigma_Y):
"""
Linear regression of line Y=A+BX
"""
sigma = np.asarray(sigma_Y).mean()
N = len(Y)
D = N*sum(X**2) - sum(X)**2
A = (sum(X**2)*sum(Y) - sum(X)*sum(X*Y))/D
B = (N*sum(X*Y) - sum(X)*sum(Y))/D
sigma_A = sigma * np.sqrt(sum(X**2)/D)
sigma_B = sigma * np.sqrt(N/D)
return (ufloat(A, sigma_A),
ufloat(B, sigma_B))
def polynomial(X, Y, d=2, sigma_Y=None):
"""
d-th degree polynomial fit
"""
weights = None
if sigma_Y:
if isinstance(sigma_Y, collections.Iterable):
weights = 1/np.asarray(sigma_Y)
else:
weights = np.repeat(1/sigma_Y, len(X))
coeff, cov = np.polyfit(X, Y, d, w=weights,
cov=True, full=False)
print cov
return correlated_values(coeff, cov)
##
## Misc
##
def check_measures(X1, X2):
"""
Checks whether the results of two set of measures
are compatible with each other. Gives the α-value
α=1-P(X within tσ) where t is the weighted difference
of X₁ and X₂
"""
t = np.abs(X1.n - X2.n)/np.sqrt(X1.s**2 + X2.s**2)
print t
return float(1 - erf(t/np.sqrt(2)))
def combine_measures(*variables):
"""
Combines different (compatible) measures of the same
quantity producing a new value with a smaller uncertainty
than the individually taken ones
"""
W = np.array([1/i.s**2 for i in variables])
X = np.array([i.n for i in variables])
best = sum(W*X)/sum(W)
sigma = 1/np.sqrt(sum(W))
return ufloat(best, sigma)
def format_measure(mean, sigma):
"""
Formats a measure in the standard declaration
"""
prec = int(np.log10(abs(sigma)))
limit = 2-prec if prec < 0 else 2
sigma = round(sigma, limit)
mean = round(mean, limit)
return "{}±{}".format(mean, sigma)
sin = wrap(lambda x: np.sin(np.radians(x)))
epsilon = 0.05